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Abstract. The article introduces a notion of maximal Selmer rank
and maximal Mordell-Weil rank for an elliptic curve with non-trivial 2-
torsion. It is shown that there exist infinite elliptic curves over Q with
maximal Selmer rank, and examples of curves with moderately high
Mordell-Weil rank are produced.

1. Introduction

Let E/Q be an elliptic curve defined over the rationals with Weierstrass
equation:

E : y2 = x3 + Ax2 + Bx

with A, B ∈ Z and discriminant ∆E = 16B2(A2 − 4B) 6= 0. Using the
method known as descent via 2-isogeny one can provide a ‘trivial’ upper
bound for the rank of E(Q), the Mordell-Weil group of E:

Proposition 1.1. Let ν(N) be the number of positive prime divisors of a
non-zero integer N . Then:

rankZ(E(Q)) ≤ ν(A2 − 4B) + ν(B)− 1.(1)

More generally, let E/Q be any elliptic curve with a non-trivial point of
2-torsion and let a (resp. m) be number of primes of additive (resp. multi-
plicative) bad reduction of E/Q. Then:

rankZ(E(Q)) ≤ m + 2a− 1.(2)

Remark 1.2. If the Weierstrass equation y2 = x3 + Ax2 + Bx is a minimal
model for E/Q (or all the prime divisors of ∆E are primes of bad reduction)
then m + 2a− 2 ≤ ν(A2 − 4B) + ν(B) ≤ m + 2a, because p = 2 is always a
prime of additive reduction and p > 2 is of additive reduction if and only if
p divides both B and A2 − 4B.

It turns out that there exist elliptic curves E/Q where the bound given
by Eq. (1) holds with equality, which prompt the following definition:

Definition 1.3. We say that an elliptic curve E : y2 = x3 + Ax2 + Bx is
of maximal Mordell-Weil rank (with respect to the number of bad primes) if
rankZ(E(Q)) = ν(A2 − 4B) + ν(B)− 1.
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Example 1.4. (1) Let E : y2 = x3 + 2308x2 + 665858x. The primes 2
and 577 are the only prime divisors of (both) B and A2− 4B. More-
over, rankZ(E/Q) = 3 and E is of maximal Mordell-Weil rank.

(2) [Kretschmer 1986] has found examples of elliptic curves of maximal
rank r, for all r within 1 ≤ r ≤ 9, of the form y2 = x3 + Ax2 + Bx
where A2−4B > 0 is prime and B has exactly r divisors. For exam-
ple, he lists y2 = x3 + 76171105x2 + 163762302832128x, of maximal
rank equal to 9.

(3) The elliptic curve E : y2 = x3 + Bx with B = −73 · 673 · 2129 · 2393 ·
4129 satisfies rankZ(E/Q) = 10, thus it is of maximal Mordell-Weil
rank. The family of curves EB : y2 = x3+Bx is a nice and abundant
source of examples (see Section 6).

(4) The elliptic curve defined by

E : y2 = x3 + 4510328029x2 + 622726581362777216x

is of maximal Mordell-Weil rank equal to 12 and the largest maximal
rank known to us. Here:

B = 27 · 132 · 29 · 41 · 71 · 73 · 107 · 149 · 293, ν(B) = 9;
A2 − 4B = 857 · 1193 · 180241 · 96875897, ν(A2 − 4B) = 4.

Section 2 concentrates on a similar notion of maximality with respect to
certain Selmer groups associated to E, which is a necessary condition for
a curve to be of maximal Mordell-Weil rank. Section 3 provides criteria to
decide whether a homogeneous space is locally solvable over Qp. In Section 4
it is shown that there exist infinitely many non-isomorphic elliptic curves of
maximal Selmer rank of any given rank. Searching among explicit families
of curves of maximal Selmer rank we find examples of maximal Mordell-
Weil rank, for every rank up to 12 (see Section 6). Section 5 is devoted to
describe infinite families of curves where the Selmer rank is arbitrarily large,
although not necessarily maximal. In Section 6 we also show that, if we
assume some standard conjectures, then there exist infinitely many elliptic
curves of maximal Mordell-Weil rank 1 and 2. Finally, in the last section we
give some empirical data about the mean rank in families of maximal Selmer
rank.

The constructions presented in this note rely solely on the theory of 2-
descents and quadratic reciprocity. In [Lemmermeyer, Mollin 2003], a simi-
lar approach is used to show that the 2-part of the Tate-Shafarevich (Sha)
group of an elliptic curve can be arbitrarily large, a result which had been
previously shown ([Kramer 1983]) using the Cassels pairing. Both authors
show explicit curves where both the 2-Selmer group and Sha are arbitrar-
ily large. The aim of this article is to construct curves where the 2-Selmer
group is large but the 2-primary component of Sha may remain small or even
trivial, as occurs in examples of maximal Mordell-Weil rank.



ELLIPTIC CURVES OF MAXIMAL RANK 3

2. Maximal Selmer Rank

In this section we briefly review the method of descent via 2-isogeny (see
[Silverman 1986], Ch. X, for detailed proofs). Let E/Q be as before and let
E′/Q be defined by the equation:

E′ : y2 = x3 − 2Ax2 + (A2 − 4B)x.

The curves E and E′ are 2-isogeneous, i.e., there exists an isogeny φ : E → E′

and a dual isogeny φ̂ : E′ → E such that φ̂ ◦ φ = [2]. The pair of isogenies
yields an exact sequence:

0 → E′(Q)[φ̂]
φ(E(Q)[2])

→ E′(Q)
φ(E(Q))

→ E(Q)
2E(Q)

→ E(Q)

φ̂(E′(Q))
→ 0(3)

where E′(Q)[φ̂] is the kernel of φ̂ and E(Q)[2] is the rational 2-torsion of E/Q.
As usual, one also defines a φ-Selmer group, here denoted by S(φ)(E/Q),
which fits into an exact sequence together with the φ-torsion of Ш(E/Q),
the Shafarevich-Tate group of E:

0 → E′(Q)/φ(E(Q)) → S(φ)(E/Q) →Ш(E/Q)[φ] → 0.(4)

The order of S(φ)(E/Q) (resp. S(φ̂)(E′/Q)) is a power of two, 2s say (resp.
2s′). Hence, by equations (3) and (4) we obtain:

rankZ(E(Q)) ≤ s + s′ − 2.(5)

We will refer to the number Sb(E) = s+s′−2 as the Selmer bound for E/Q.
Moreover, a simple and efficient description of the Selmer groups S(φ) and

S(φ̂) is provided by the theory. Let T be a set of places of Q consisting of ∞
and all primes of bad reduction for E/Q (a prime of bad reduction divides
2B(A2 − 4B) in this case). We define:

Q(T, 2) := {d ∈ Q∗/Q∗2 : ordp(d) ≡ 0 mod 2 for all p /∈ T}
and let Cd and C ′

d be the homogeneous spaces given by equations:

Cd : dZ2 = d2U4 − 2dAU2V 2 + (A2 − 4B)V 4,

C ′
d : dZ2 = d2U4 + dAU2V 2 + BV 4.

Then one has the following:

S(φ)(E/Q) ∼= {d ∈ Q(T, 2) : Cd(Qp) 6= ∅ for all p ∈ T}
S(φ̂)(E′/Q) ∼= {d ∈ Q(T, 2) : C ′

d(Qp) 6= ∅ for all p ∈ T}
where Q∞ = R (see [Silverman 1986], X.4.9 for more details).

Lemma 2.1. Let E, E′ be elliptic curves as above. The orders of the asso-
ciated Selmer groups satisfy:

s ≤ ν(A2 − 4B) + 1, s′ ≤ ν(B) + 1.

Furthermore:

Sb(E) = s + s′ − 2 ≤ ν(A2 − 4B) + ν(B)− 1.
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Proof. Let d ∈ Q(T, 2) such that d is square-free and does not divide A2 −
4B. Hence, there is a prime p|d with gcd(A2 − 4B, p) = 1. Suppose for a
contradiction that d ∈ S(φ), so that Cd(Qp) 6= ∅. Notice that if (u′, v′, z′) ∈
Cd(Qp) then there exist u, v, z ∈ Zp such that (at least) two of them are in
Z×p and (u, v, z) ∈ Cd(Qp). Since p|d and p - (A2 − 4B) then p|v. Hence
p must divide z2, which contradicts the fact that at least two of u, v, z are
units.

Thus, we must have d|A2 − 4B and so:

S(φ)(E/Q) ∼= {d ∈ Q(T1, 2) : Cd(Qp) 6= ∅ for all p ∈ T}
where T1 consists of ∞ and all bad primes dividing A2 − 4B. We conclude
that s ≤ ν(A2 − 4B) + 1. Similarly one shows that

S(φ̂)(E′/Q) ∼= {d ∈ Q(T2, 2) : C ′
d(Qp) 6= ∅ for all p ∈ T}

where T2 consists of ∞ and all bad primes dividing B, which in turn shows
that s′ ≤ ν(B) + 1.

In order to prove the last inequality in the lemma, notice that:

Cd : dZ2 = d2U4 − 2dAU2V 2 + (A2 − 4B)V 4

= (dU2 −AV 2)2 − 4BV 4,

C ′
d : dZ2 = d2U4 + dAU2V 2 + BV 4

= (dU2 + AV 2)2 −
(

A2 − 4B

4

)
V 4.

We claim that either Cd(R) = ∅ or C ′
d(R) = ∅ for all d ∈ Q(T, 2) with

d < 0. Indeed, let d < 0 be fixed. As the equations for Cd, C
′
d above show, if

B < 0 then Cd(R) = ∅ and if A2 − 4B < 0 then C ′
d(R) = ∅. Hence, if both

Cd(R) and C ′
d(R) were non-empty then B > 0 and A2 − 4B > 0 must hold.

However, if A2 − 4B > 0 and A ≥ 0 then Cd(R) is empty and if B > 0 and
A ≤ 0 then C ′

d(R) is empty, as claimed. In particular, either S(φ) is a subset
of Q(T1 \ {∞}, 2) or S(φ̂) is a subset of Q(T2 \ {∞}, 2). Consequently, either
s ≤ ν(A2 − 4B) or s′ ≤ ν(B) and the inequality follows. ¤

Proof of Proposition 1.1. Proposition 1.1 is a direct consequence of the pre-
vious lemma and equation (5). ¤

Definition 2.2. We say that an elliptic curve E : y2 = x3 + Ax2 + Bx is of
maximal Selmer rank (or maximal 2-Selmer rank) with respect to the number
of bad primes if

Sb(E) = s + s′ − 2 = ν(A2 − 4B) + ν(B)− 1.

Example 2.3. Let A = 68 = 22 · 17 and B = 578 = 2 · 172. Then 2B(A2 −
4B) = 314432 = 26173. Moreover, the elliptic curve E : y2 = x3 + 68x2 +
578x satisfies Sb(E) = 3, thus E is of maximal Selmer rank. However,
rankZ(E/Q) = 1 so E is not of maximal Mordell-Weil rank.
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For examples of curves with maximal Mordell-Weil rank equal to 3, let
A = 4p and B = 2p2 where p = 577, 4273, or 4657.

We finish this section with a remark. Let E/Q be an arbitrary elliptic
curve given in Weierstrass form by y2 = x3 +Ax+B with A, B integers with
trivial 2-torsion. It can be shown that rankZ(E(Q)) ≤ 2b + 2h2 where b is
the number of primes of bad reduction of E/Q and h2 is the 2-part of the
ideal class group of Q(E[2]) (see [Silverman 1986], p. 235). How sharp is
this more general bound? Are there any examples where the equality holds?

3. Local Solvability of Homogeneous Spaces

In this section we provide criteria for the local solvability of the spaces Cd

and C ′
d. These spaces are of the general form:

C : Z2 = d1U
4 + FU2V 2 + d2V

4.

where D, F, d1, d2 are integers such that D = d1 · d2. The space Cd cor-
responds to the choice (D,F ) = (A2 − 4B,−2A) and C ′

d corresponds to
(D, F ) = (B,A).

The solvability of more general spaces of the form y2 = ax4 + bx3 +
cx2 + dx + e has been studied by [Birch, Swinnerton-Dyer 1963]. Also,
[Cremona 1997] provides an efficient computational algorithm to determine
the solvability of such spaces. In particular, the space C is solvable over Qp

for all primes which do not divide 24D(F 2 − 4D)2, the discriminant of the
polynomial in the variables U and V . Below, νp is the usual p-adic valuation
and

(
·
p

)
stands for the Legendre symbol.

Lemma 3.1. Let p > 3 be a prime and let C be the homogeneous space given
above.

(1) If p|F 2 − 4D but p - D then C is solvable in Qp if and only if one of
the following conditions is satisfied
(a) d1 or d2 is a quadratic residue modulo p;
(b) νp(F 2 − 4D) is even and

(
−2F

p

)
= −1, or equivalently:

(
F

p

)
=

{
1 if p ≡ 5, 7 mod 8,
−1 if p ≡ 1, 3 mod 8.

(2) If p|D but p - F then C is solvable in Qp if and only if one of the
following is satisfied
(a) p - gcd(d1, d2);
(b) p | gcd(d1, d2) and either

(
F
p

)
= 1 or νp(d1) or νp(d2) is even.

The previous lemma appears in [Kretschmer 1986] (cf. Lemmas 1, 2 and 3)
and is proved in [Kretschmer 1983]. The proof is an straightforward exercise
with p-adic numbers. Part (2) is shown using the fact that y2 = d1x

4 +
Fx2 +d2 is equivalent to (2d1x

2 +F )2 = F 2−4D+4d1y
2. In fact, the latter

equality also shows:
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Lemma 3.2 (p = ∞). Let D = d1 · d2 and let C be the homogeneous space
given by Z2 = d1U

4 + FU2V 2 + d2V
4.

(1) If d1 is a positive divisor of D then the space C is solvable over R.
In particular, if D < 0 then C(R) 6= ∅.

(2) If d1 is a negative divisor of D and D > 0 then C is solvable over R
if and only if F > 0 and F 2 − 4D > 0.

The next two lemmas provide similar solvability criteria for the primes
p = 2 and p = 3.

Lemma 3.3 (p = 2). Suppose one of the following conditions is satisfied:
• (A2) : F ≡ 1 mod 8 and ν2(D) ≥ 7;
• (B2) : F ≡ 5 mod 8 and ν2(D) is odd and ≥ 5;
• (C2) : All prime divisors of D are congruent to 1 or 7 modulo 8 and
(D ≡ 7 mod 8 or F ≡ 3 mod 8);

Then the homogeneous spaces C are solvable in Q2, for all square-free divisors
d1 of D. Moreover, if D > 0 and one of the following conditions is satisfied:

• (D2) : D is odd, D ≡ q mod 8 and all prime divisors of D are either
congruent to 1 or q modulo 8;

• (E2) : F is odd and all prime divisors of D are 1 modulo 4;
• (F2) : F ≡ 7 mod 8 and D = 2eD′ with e ≥ 4 and all primes
dividing D′ are congruent to 1 modulo 4.

then the space C is solvable in Q2 for all positive square-free d1|D.

Lemma 3.4 (p = 3). Suppose one of the following conditions is satisfied:
• (A3) : D ≡ 2 mod 3 or F ≡ 0 mod 3;
• (B3) : D ≡ 0 mod 33 and F ≡ 1 mod 3;

Then the homogeneous spaces C are solvable in Q3, for all square-free divisors
d1 of D. Moreover, if D > 0 and

• (C3) : All prime divisors of D are congruent to 1 modulo 3.
then the space C is solvable in Q3, for all positive square-free d1|D.

The proofs of the previous lemmas are again trivial exercises with 2-adic
and 3-adic numbers. The lemmas above prove the following theorem:

Theorem 3.5. Let E : y2 = x3 + Ax2 + Bx be an elliptic curve and put
(D, F ) = (B,A) and (D′, F ′) = (A2−4B,−2A). Suppose that gcd(A,B) = 1
and:

(1) (p = ∞) B < 0 or (A > 0, B > 0 and A2 − 4B > 0);
(2) (p = 2) The pair (D, F ) satisfies one of the conditions (A2), (B2)

or (C2), and the pair (D′, F ′) satisfies one of the conditions (A2)
through (F2);

(3) (p = 3) The pair (D,F ) satisfies one of the conditions (A3) or (B3),
and the pair (D′, F ′) satisfies one of (A3), (B3) or (C3);
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(4) If p ≥ 5 and p|A2 − 4B then p satisfies condition (1.a) or (1.b) of
Lemma 3.1 with respect to the pair (D,F ), and condition (2.a) or
(2.b) with respect to the pair (D′, F ′);

(5) If p ≥ 5 and p|B then p satisfies condition (1.a) or (1.b) of Lemma
3.1 with respect to the pair (D′, F ′), and condition (2.a) or (2.b) with
respect to the pair (D, F ).

Then the elliptic curve E is of maximal Selmer rank.

As an example, we apply the theorem to the curve given in Example
1.4.(3):

Corollary 3.6. The elliptic curve defined by E : y2 = x3 + Ax2 + Bx, with
A = 4510328029 and B = 622726581362777216 is of maximal Selmer rank
equal to 12.

Proof. One has the following factorizations into primes:

B = 27 · 132 · 29 · 41 · 71 · 73 · 107 · 149 · 293, ν(B) = 9;
A2 − 4B = 857 · 1193 · 180241 · 96875897, ν(A2 − 4B) = 4.

Clearly, A2 − 4B > 0. Put (D, F ) = (B, A) and (D′, F ′) = (A2 − 4B,−2A)
as in the theorem. Then (D, F ) satisfies condition (B2) since ν2(B) = 7 and
A ≡ 1 mod 8. On the other hand, the pair (D′, F ′) satisfies condition (C2)
because the four primes dividing A2 − 4B are all congruent to 1 modulo 8.

Next, A2 − 4B ≡ B ≡ 2 mod 3, thus both (D, F ) and (D′, F ′) satisfy
(A3). Finally, conditions (4) and (5) in the theorem are verified because all
primes p dividing A2− 4B are congruent to 1 modulo 4 and

(
q
p

)
= 1, for all

q|B (and therefore, by quadratic reciprocity
(

p
q

)
= 1 as well). Notice that

also
(

A
13

)
= 1, and so p = 13 satisfies condition (2.b) of Lemma 3.1. Thus,

all hypotheses of Theorem 3.5 are verified. ¤

Corollary 3.7. Let E : y2 = x3 + Ax2 + Bx be an elliptic curve and put
(D, F ) = (B,A) and (D′, F ′) = (A2 − 4B,−2A). Suppose that B = 2e3fB′,
with e, f ≥ 0 and B′ square-free, gcd(A,B) = 1 and:

(1) (p = ∞) B < 0 or (A > 0, B > 0 and A2 − 4B > 0);
(2) (p = 2) A is odd and the pair (D, F ) satisfies one of the conditions

(A2), (B2) or (C2), and the pair (D′, F ′) satisfies one of the condi-
tions (A2) through (F2);

(3) (p = 3) The pair (D,F ) satisfies one of the conditions (A3) or (B3),
and the pair (D′, F ′) satisfies one of (A3), (B3) or (C3);

(4) A2 − 4B is prime.
Then the elliptic curve E is of maximal Selmer rank.

Proof. It suffices to show that under the conditions in the statement of the
corollary the elliptic curve E satisfies conditions (4) and (5) in Theorem
3.5. Let p = A2 − 4B be a prime. Notice that A is odd and under either
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hypothesis (A2), (B2) or (C2) we must have p ≡ 1 mod 4. Let q be any
prime dividing B. Then:(

q

p

)
=

(
p

q

)
=

(
A2 − 4B

q

)
=

(
A2

q

)
= 1.

¤
The previous corollary is essentially due to Krestchmer (in Theorem 3 of

[Kretschmer 1986] he states the result above, but only for curves such that
(B,A) satisfies conditions (A2) and (B3)).

4. The Family y2 = x3 + Bx

In this section we restrict our attention to the family y2 = x3 + Bx (i.e.
A = 0). We fix a number N ≥ 1 and assume B factors as:

B = (−1)apα1
1 pα2

2 . . . pαN
N

where a = 0 or 1 and αi ∈ Z>0. We may assume that B is fourth power
free, so that 1 ≤ αi ≤ 3. First, we restate Lemma 2.1 in this special case,
recovering a theorem of Tate:

Corollary 4.1 ([Tate 1961]).

rankZ(E/Q) ≤ Sb(E) ≤
{

2N − 1, if B is even;
2N, if B is odd.

Thus, a curve E : y2 = x3 + Bx, with odd B ∈ Z (resp. even integer
B 6= 0), is of maximal Selmer rank if Sb(E) = 2N (resp. Sb(E) = 2N − 1).

Definition 4.2. We say that a set of distinct primes {p1, . . . , pN} satisfy the
Legendre condition if pi ≡ 1 mod 8 for i = 1, . . . , N and pi is a quadratic
residue modulo pj for all j 6= i.

We will show in Corollary 4.6 that for each N there exist infinitely many
distinct N -tuples satisfying the Legendre condition.

Theorem 4.3 (Odd B). Let B = (−1)ap1p2 . . . pN be an odd square-free
integer and let E be the elliptic curve given by y2 = x3 + Bx . Then:

(1) Assume B > 0. The curve E is of maximal Selmer rank if and only
if the primes pi satisfy the Legendre condition (4.2).

(2) Assume B < 0. The curve E is of maximal Selmer rank if and
only if the {pi} satisfy the Legendre condition and |B| ≡ 1 mod 16.
Moreover, if the Legendre condition is satisfied and |B| ≡ 9 mod 16
then Sb(E) = 2N − 1.

Proof. Let N , B and E/Q be as in the statement of the theorem. In order
to prove the result we need to provide necessary and sufficient conditions for
the homogeneous spaces

C ′
d : Z2 = dU4 +

B

d
V 4, Cd : Z2 = dU4 − 4B

d
V 4, C2d : Z2 = 2dU4 − 2B

d
V 4
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(here Z = UW ) to be everywhere locally soluble (ELS) and we recall that it
suffices to consider solubility for those primes p dividing 2B. Moreover, by
Lemma 2.1 d is a square-free divisor of B.

Let p = pi 6= 2, for some i = 1, . . . , N . By Hensel’s lemma, it is clear that
Cd(Qp), C ′

d(Qp) and C2d(Qp) will be both non-empty for all d if and only if
(−1

p

)
=

(
2
p

)
=

(
pj

p

)
= 1, for all j 6= i.(6)

The first two conditions are equivalent to p = pi ≡ 1 mod 8. So equation
(6) is a restatement of the Legendre condition.

Now, we let p = 2 and assume that the primes pi for i = 1, . . . , N satisfy
pi ≡ 1 mod 8. Thus, |B| =

∏
pi ≡ 1 mod 8. Under these conditions, for

any square-free divisor d of B, both |d| and |B/d| are squares in Q2 and
so Cd(Q2) and C ′

d(Q2) are non-empty (whenever Cd(R) and C ′
d(R) are non-

empty). Finally, working modulo 16 (and 32 when necessary) shows that if
B > 0 and |B| ≡ 1 mod 8 then C2d(Q2) is non-empty, and if B < 0 then
C2d(Q2) is non-empty if and only if |B| ≡ 1 mod 16. Indeed if |B| ≡ 1
mod 16 then |d| ≡ |B/d| ≡ 1 or 9 mod 16 and C2d(Q2) 6= ∅ while if |B| ≡ 9
mod 16 then (|d|, |B/d|) ≡ (1, 9) or (9, 1) mod 16 and C2d(Q2) is empty in
both cases.

In particular, if the primes pi satisfy eq. (6), B < 0 and |B| ≡ 9 mod 16
then C ′

d(Q2), Cd(Q2) are non-empty while C2d(Q2) is necessarily empty.
Hence Sb(E) = s + s′ − 2 = 2N − 1. ¤

Remark 4.4. Let p be a positive odd prime and let Ep/Q be defined by y2 =
x3−p2x. A similar argument to the one above shows that rankZ(Ep(Q)) ≤ 1.
In this case, one can show that Ep(Q) has ‘maximal’ rank equal to 1 infinitely
often. In fact the rank is maximal for all p ≡ 5 mod 8 ([Koblitz 1984], Ch.
II, §6, Proposition 12). The curves Ep are related to the congruent number
problem ([Koblitz 1984], Ch. I).

Similar standard p-adic arguments show the following result.

Theorem 4.5 (Even B). Let B = (−1)a2p2p3 . . . pN (here p1 = 2) be an
even square-free integer and let E be the elliptic curve given by y2 = x3+Bx.
Then:

(1) Assume B < 0. The curve E is of maximal Selmer rank (Sb(E) =
2N − 1) if and only if the primes {pi}N

i=2 satisfy the Legendre condi-
tion.

(2) Assume B > 0. If the Legendre condition is satisfied for {pi}N
i=2 then

the curve E satisfies Sb(E) = 2N − 2.

Corollary 4.6. Let n > 1 be a integer. There exist infinitely many elliptic
curves of the form E : y2 = x3 + Bx which are of maximal Selmer rank
and Selmer bound Sb(E) = n. In particular, there exist elliptic curves with
arbitrarily high Selmer bound.
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Proof. Let n > 1 be fixed. By theorems 4.3 and 4.5, if {p1, . . . , pN} is a set of
distinct odd primes satisfying pi < pi+1 and the Legendre symbol conditions(−1

pi

)
=

(
2
pi

)
=

(
pj

pi

)
= 1, for all i and j 6= i,(7)

then the elliptic curves EB : y2 = x3 + (
∏

pi)x and E−2B : y2 = x3 −
2(

∏
pi)x are of maximal Selmer rank, satisfying respectively Sb(EB) = 2N

and Sb(E−2B) = 2N +1. Therefore, it suffices to show that for every N > 1
we can choose infinitely many different N -tuples of primes (p1, . . . , pN ) which
satisfy eq. (7). The latter is a simple consequence of Dirichlet’s theorem
on primes in arithmetic progressions. Indeed, given an N -tuple of primes
(p1, . . . , pN ) which satisfy eq. (7) there exist distinct primes pN+1,k ≡ 1
mod 8

∏N
i=1 pi, one for each k ≥ 1. Thus, by quadratic reciprocity, each

of the N + 1-tuples (p1, . . . , pN , pN+1,k) satisfies eq. (7), and they are all
distinct. ¤
Remark 4.7. The proof of Corollary 4.6 provides explicit N -tuples of primes
with the required properties. However, the method described is (by far) not
the most computationally efficient. Suppose that (p1, . . . , pN ) have already
been chosen to satisfy the Legendre condition, or equivalently eq. (7), and
let M =

∏
pi. Let Q ( (Z/MZ)× be the set of all equivalence classes of

numbers q such that q is a quadratic residue modulo pi for all i = 1, . . . , N .
Thus, 1 ∈ Q but there are many other elements. Hence, we may choose
pN+1 ≡ 1 mod 8 such that pN+1 ≡ q mod M for some q ∈ Q.

Remark 4.8. We owe the following remark to Farshid Hajir: let S =
{p1, . . . , pN} be a set of distinct odd primes which satisfy the Legendre con-
dition, let B =

∏
pi and let K = Q(

√
B). It is a classical theorem due to

[Rédei 1934] that the quartic extensions of K which are unramified outside
∞ correspond with every factorization B = d1d2 with positive d1, d2 ∈ N.
Moreover, each quartic extension is of the form K(

√
α) where α = x + y

√
B

and x, y, z are solutions of x2 − d1y
2 = d2z

2.

5. Large Selmer Bound

In practice, one is interested in finding elliptic curves E/Q with high
Mordell-Weil rank. It is conjectured that curves with arbitrarily high rank
do exist, but only curves with rank less or equal than 28 have been shown.
Over all elliptic curves with fixed torsion group Z/2Z (these have a model of
the form E : y2 = x3 +Ax2 +Bx) the highest rank found is 17 (by N. Elkies,
see [Dujella Web]). By Corollary 4.1, the elliptic curve E : y2 = x3 + Bx
satisfies

rankZ(E/Q) ≤ Sb(E) ≤
{

2N − 1, if B is even;
2N, if B is odd,

where N = ν(B), as before, is the number of positive prime divisors of B.
In particular, a necessary condition for the Mordell-Weil rank to be high is
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that Sb(E), the Selmer bound, should be high as well. Unfortunately, Sb(E)
being high is far from being a sufficient condition for high algebraic rank.

Section 2 provides the explicit description of infinite families of curves with
maximal Selmer bound Sb(E) = n for every n ≥ 2. However, the coefficients
which appear in those curves are usually of elevated height, which make
the methods to compute the Mordell-Weil group lengthy and tedious. With
this in mind, we provide descriptions of explicit families with ‘large’ Selmer
bound which, in general, have smaller coefficients. The following theorem is
a modification of Theorem 3.5:

Theorem 5.1. Let E : y2 = x3 + Ax2 + Bx be an elliptic curve and put
(D, F ) = (B,A) and (D′, F ′) = (A2−4B,−2A). Suppose that gcd(A,B) = 1
and:

(1) (p = ∞) B < 0 or (A > 0, B > 0 and A2 − 4B > 0);
(2) (p = 2) The pairs (D, F ) and (D′, F ′) satisfy one of the conditions

(A2) through (F2);
(3) (p = 3) The pairs (D,F ) and (D′, F ′) satisfy one of (A3), (B3) or

(C3);
(4) If p ≥ 5 and p|A2 − 4B then p satisfies condition (1.a) or (1.b) of

Lemma 3.1 with respect to the pair (D,F ), and condition (2.a) or
(2.b) with respect to the pair (D′, F ′);

(5) If p ≥ 5 and p|B then p satisfies condition (1.a) or (1.b) of Lemma
3.1 with respect to the pair (D′, F ′), and condition (2.a) or (2.b) with
respect to the pair (D, F ).

Then the elliptic curve E has Selmer bound Sb(E) = ν(A2−4B)+ν(B)−2,
that is, the Selmer bound is one unit less than the trivial bound of Prop. 1.1.

Proof. By Lemmas 3.1 through 3.4, under the hypotheses of the theorem,
the homogeneous spaces Cd and C ′

d are solvable for all positive divisors d (of
A2−4B and B, respectively) over Qp, for all p, and also over R. However, Cd

may not be everywhere locally solvable for negative d. Hence the result. ¤

Example 5.2. The elliptic curve given by E : y2 = x3 − 9749057x2 +
21653921827156x has trivial bound 9 but the previous theorem shows that
the actual Selmer bound is Sb(E) = 8. Moreover, Magma verifies that E
has algebraic rank equal to 8. By the way, the torsion of E is isomorphic
to Z/2Z× Z/2Z. See Section 6 for examples of curves of maximal rank and
different torsion subgroups.

Before we state the following theorem, we fix some notation. Let S =
{p1, . . . , pN} be a set of N distinct odd prime numbers. We define non-
negative integers:

N3(S) = N3 := #{p ∈ S : p ≡ 3 mod 4},
N5(S) = N5 := #{p ∈ S : p ≡ 5 mod 8}.

We split the Legendre conditions in Def. 4.2 into two statements.
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Definition 5.3. We say that a set S = {p1, . . . , pN} of distinct odd primes
satisfies (L1) if N3 = N5 = 0. The set S satisfies (L2) if p is a quadratic
residue modulo q for all distinct p, q in S.

Theorem 5.4. Let S = {p1, . . . , pN} be a collection of N distinct odd
primes. Then:

(1) If N3(S) ∈ {0, 1} and (L2) then the elliptic curves E± : y2 = x3 ±
(
∏

pi)x satisfy Sb(E±) ≥ 2N − 3.
(2) If N3(S) = 0, N5 ∈ {0, 1} and (L2) then the elliptic curves E±,2 :

y2 = x3 ± 2(
∏

pi)x satisfy Sb(E±,2) ≥ 2N − 2.

Notice also that using the method described in Corollary 4.6 it can be
shown that, for every N ≥ 2, every family described in Theorem 5.4 is
infinite. Moreover, explicit examples are easily found for each case. The
proof of the theorem is a case by case p-adic exercise, very similar to the
proof of Theorem 4.3.

6. Examples of Maximal Rank

We start by showing that, if we assume two well-known conjectures (one
of conjectures 1 or 2, and conjecture 3 below), then there exist infinitely
many non-isomorphic elliptic curves with maximal Mordell-Weil rank equal
to 1 and infinitely many of maximal rank 2.

Conjecture 1 (Parity conjecture). The rank of an elliptic curve E/Q is
even if and only if the root number of E/Q is +1, otherwise (if the root
number is −1) the rank is odd.

Conjecture 2 (Finiteness of ‘Sha’). The Shafarevich-Tate group of E/Q,
Ш(E/Q), is a finite group.

Conjecture 3 (Primes represented by polynomials). If a, b, c are relatively
prime, a is positive, a + b and c are not both even, and b2 − 4ac is not a
perfect square, then there are infinitely many primes of the form an2+bn+c.

The parity conjecture is a consequence of the also well-known Birch and
Swinnerton-Dyer conjecture (see [Silverman 1986], p. 362). The finiteness of
Ш has been established for elliptic curves E/Q with complex multiplication
such that L(E/Q, 1) 6= 0 (see [Rubin 1987], [Rubin 1989]). Conjecture 3 can
be found, for example, in [Hardy, Wright 1979], p. 19.

Theorem 6.1. Let n be a natural number such that p = (8n + 5)2 − 128 =
64n2+80n−103 is prime. Let E/Q be defined by y2 = x3+(8n+5)x2 +32x.
Then, if the parity conjecture holds for E/Q or if Ш(E/Q) is finite then the
Mordell-Weil rank of E is exactly equal to 1.

Proof. Let A = 8n + 5 and let B = 32. By Corollary 3.7, the elliptic
curve y2 = x3 + Ax2 + Bx is of maximal Selmer rank equal to Sb(E) = 1.
On the other hand, a quick calculation gives that the root number of this
curve is −1 (the only primes which need to be consider are 2, p and ∞; see
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[Rohrlich 1982]). Hence, if the parity conjecture holds then the rank must
be exactly 1.

Alternatively, if the Tate-Shafarevich group of E/Q is finite then Cas-
sels has shown that its order must be a perfect square and the order of
the 2-primary component Ш(E/Q)[2] is also a perfect square, say 22t (see
[Cassels 1962], in fact one only needs to assume that the 2-primary compo-
nent is finite for our purposes). On the other hand, the fact that Sb(E) =
s + s′ − 2 = 1 implies that the Z/2Z-rank of S(2)(E/Q) is s + s′ − 1 = 2.
Finally, the fact that there is only a non-trivial point of two torsion in E(Q),
rankZ(E/Q) ≤ 1 and the exact sequence:

0 → E(Q)/2(E(Q)) → S(2)(E/Q) →Ш(E/Q)[2] → 0

imply that the rank of E must be exactly 1 and Ш(E/Q)[2] is trivial. ¤

Example 6.2. The first ten values of A which verify the hypothesis of the
theorem are 13, 21, 61, 77, 93, 125, 141, 149, 181 and 189. In fact, the set
K = {1 ≤ k ≤ 223 : (8k + 5)2 − 128 is prime} has 915266 elements (the
number 223 = 8388608).

We present another construction which yields elliptic curves of maximal
rank 1 and which only relies on a variant of Conjecture 3:

Theorem 6.3. Let p be a prime such that p ≡ 17 mod 24 and let n be an
odd integer such that q = (p + 1 + n2)2 − 4p = n4 + 2(p + 1)n2 + (p − 1)2

is prime. Then the elliptic curve E : y2 = x3 + (p + 1 + n2)x2 + px is of
maximal rank 1.

Proof. Let p ≡ 17 mod 24 be a prime (the existence of infinitely many of
these primes is of course provided by Dirichlet’s theorem) and let n and q
be as in the statement of the theorem. Put A = p + 1 + n2 and B = p.
We claim that the curve E : y2 = x3 + Ax2 + Bx satisfies the hypotheses of
Corollary 3.7. Indeed, A > 0, B > 0 and A2 − 4B = q > 0. Moreover, A is
odd (p must be odd and n is odd by assumption), (B, A) satisfies condition
(C2) (because B = p ≡ 1 mod 8) and (A3) because B = p ≡ 2 mod 3. The
pair (A2 − 4B,−2A) satisfies (D2) because A2 − 4B = q ≡ 5 mod 8, and
(A3) because either −2A ≡ 0 mod 3 or A2 − 4B ≡ 2 mod 3. Hence, by
Corollary 3.7, E is of maximal Selmer rank 1.

Furthermore, the elliptic curve E/Q has a rational point P = (−p, pn).
We only need to check that P is not a torsion point. If P was torsion
then by the Nagell-Lutz theorem all the multiples of P would have integer
coordinates. A simple calculation shows that the x coordinate of 2P and 4P
are

x(2P ) =
(p− 1)2

4n2
, x(4P ) =

(−1 + 4p + 16n4p− 6p2 + 4p3 − p4)2

16n2(−1 + p)2(1 + 2n2 − 2p + 2n2p + p2)2

Since p ≡ 17 mod 24 and n is odd (otherwise q would not be prime) the
fraction in lowest terms defining x(4P ) is of the form odd

even so is not an
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integer. Therefore P is not torsion, the Mordell-Weil rank equals 1 and E/Q
is of maximal algebraic rank. ¤
Example 6.4. Fix p = 17. The first ten values of n which satisfy the
hypotheses of the theorem are n = 1, 3, 7, 9, 19, 33, 49, 51, 59 and 61. Let
Kp = {1 ≤ k ≤ 223 : (p + 1 + k2)2 − 4p is prime}. We have calculated
|K17| = 326450 and |K41| = 190243.

By Theorem 4.3, if p is a prime then the curve y2 = x3−px is of maximal
Selmer rank 2 if and only if p ≡ 1 mod 16. In the following theorem we
slightly modify a result of [Silverman 1986], Prop. 6.2, p. 311, in order to
provide examples of curves where the algebraic rank is maximal and equal
to 2.

Theorem 6.5. Let n be a natural number such that p = 16n2 + 1 is prime
and let E/Q be the elliptic curve defined by y2 = x3−px. If either Ш(E/Q)
is finite or the parity conjecture holds for E then the curve E/Q is of maximal
Mordell-Weil rank equal to 2.

Proof. Let p = 16n2 + 1 be prime and let E : y2 = x3 − (16n2 + 1)x.
By Theorem 4.3, Sb(E) = 2 and E is of maximal Selmer rank. Also, the
point P = (16n2 + 1, 4n(16n2 + 1)) belongs to E(Q) and we claim that
P is not a torsion point. Indeed, by the Nagell-Lutz theorem, P is not
a 2-torsion point (because y(P ) 6= 0) and if P is a torsion of order > 2
then y(P )2 = 28n2(16n2 + 1)2 must divide −4(16n2 + 1)3, which clearly
cannot happen. Thus, ETors

∼= Z/2Z, P is a point of infinite order and
rankZ(E/Q) ≥ 1. Another quick calculation gives that the root number of
this curve is +1.

Thus, if the parity conjecture holds for E then the Mordell-Weil rank must
be equal to 2. Alternatively, if the Tate-Shafarevich group of E/Q is finite
then a similar argument to the one given in the proof of Theorem 6.1 shows
that the rank of E must be exactly 2. ¤
Example 6.6. The first 10 primes of the form 16n2 + 1 are 17, 257, 401,
577, 1297, 1601, 3137, 7057, 13457 and 14401. The set K = {1 ≤ k ≤ 223 :
16k2 + 1 is prime} consists of 708166 numbers.

It would be quite interesting to prove the existence of infinitely many
curves of maximal rank unconditionally, or even the existence of infinitely
many curves of maximal rank ≥ 3 relying on conjectures, if necessary. Next,
we provide examples of moderately high maximal Mordell-Weil and different
torsion subgroups. In order to find these examples, the authors have used
previous known families of curves with moderate rank and fixed torsion, as
described by [Kulesz, Sthalke 2001], [Lecacheux 2003] and [Campbell, Goins],
among others cited below.

6.1. Examples with Z/2Z torsion subgroup. As pointed out in the pre-
vious section, elliptic curves with torsion subgroup Z/2Z and rank ≤ 17 have
already been found. However, these curves are not of maximal Mordell-Weil
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Table 1. Known examples with Z/2Z torsion.

Author (year) M-W(E) Sb(E) Tb(E)

Elkies (2005) 17 17 29
Dujella (2002) 15 15 26
Fermigier (1996) 14 14 27

Kulesz - Stahlke (2001) 14 14 25
Dujella (2001) 14 14 19
Watkins (2002) 14 14 36

Table 2. Examples of maximal Mordell-Weil rank and Z/2Z torsion

Rank B

1 −2
2 −17
3 −82 = (−1) · 2 · 41
4 −10081 = (−1) · 17 · 593
5 −108322 = (−1) · 2 · 41 · 1321
6 −11813521 = (−1) · 17 · 281 · 2473
7 −1577047042 = (−1) · 2 · 41 · 2593 · 7417
8 −141262310897 = (−1) · 41 · 769 · 2081 · 2153
9 −727465200962 = (−1) · 2 · 41 · 1601 · 2137 · 2593
10 −1033477836241777 = (−1) · 73 · 673 · 2129 · 2393 · 4129

rank. Table 1 contains a list of some current records (as of 5/4/2006), to-
gether with the actual rank, M-W(E), the Selmer bound, Sb(E) = s+ s′−2
and the ‘trivial’ bound, Tb(E) = ν(A2 − 4B) + ν(B)− 1. For a Weierstrass
model of the curves, see [Dujella Web]. In order to calculate the trivial bound
we rewrote each curve in the form y2 = x3 + Ax2 + Bx.

The set of elliptic curves which are of maximal Selmer rank contains the set
of elliptic curves which are of maximal Mordell-Weil rank. Looking through
the curves described by Theorems 4.3 and 4.5, the authors of the present
article have been able to find curves of maximal rank up to 10 among the
curves of the form E : y2 = x3 + Bx. Table 2 provides examples of square-
free numbers B such that the elliptic curve E is of the indicated maximal
Mordell-Weil rank. The search was performed with Mathematica running
on desktop computers and with programs written by the authors (details of
the algorithms can be found in [Aguirre, Castañeda, Peral 2003]); the ranks
were verified using Magma and Cremona’s mwrank.

We have also found the following elliptic curves:

E11 : y2 = x3 + 1630368370x2 + 134972837533033073x
E12 : y2 = x3 + 4510328029x2 + 622726581362777216x.
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The curves E11 and E12 are of maximal rank 11 and 12, respectively. These
examples were found searching through a 6-parameter family of elliptic curves,
which we briefly describe next.

Let ai, with i = 1, . . . , 6, be arbitrary integers and let P (x) be the poly-
nomial P (x) =

∏6
i=1(x

2−a2
i ). Let si be the (symmetric) polynomials in the

variables a2
i such that:

P (x) = x12 − s1x
10 + s2x

8 − s3x
6 + s4x

4 − s5x
2 + s6.

If we define another polynomial Q(x) by

Q(x) = x6 − s1

2
x4 +

4s2 − s2
1

8
x2 − s3

1 − 4s1s2 + 8s3

16
then there exist polynomials t1, t2, t3 in the si such that if C(x) = t1x

4 +
t2x

2 + t3 then Q(x)2 − P (x) = C(x). Let E/Q be the curve defined by:

E : y2 = C(x).

Notice that P (ai) = 0 for all i = 1, . . . , 6, thus C(ai) = Q(ai)2 is a square.
Hence the points (ai, Q(ai)), i = 1, . . . , 6, are rational points on E. Finally,
y2 = C(x) is birationally equivalent to the curve in Weierstrass form

y2 = x3 + Ax2 + Bx with A = − t2
2

, B =
t22 − 4t1t3

16
.

Therefore, the above construction yields a 6-parameter family of elliptic
curves with a point of two torsion, namely (0, 0). It can be shown that
the generic rank of the family is 6. The elliptic curves E11 and E12 appeared
as specializations of this family, for particular values of the ai.

6.2. Examples with Z/2Z× Z/2Z torsion subgroup. The elliptic curve
with Z/2Z×Z/2Z torsion subgroup and largest rank known has been given
by Elkies, the rank is 14 but the trivial bound predicts 30 for that particular
curve, thus it is not of maximal rank. Similarly, none of the previously
known examples (Elkies (rank 11, 2005), Dujella-Kulesz (rank 11, 2006); see
[Dujella Web]) are of maximal rank.

Here we present examples of elliptic curves of maximal rank up to 7 and
fixed torsion subgroup Z/2Z × Z/2Z. [Kihara 2004a] describes a family of
elliptic curves with torsion group Z/2Z × Z/2Z and generic rank equal to
six (in fact, this family attains the highest rank known for an elliptic curve
with torsion Z/2Z×Z/2Z and defined over the function field Q(t)). We will
use an intermediate result in its construction. Kihara considers the quartic

x4 + y4 + z4 = a(x2y2 + y2z2 + z2x2).

The change of variables

X =
(2y2 − ax2 − az2)2

(xz)2
; Y =

(a2 − 4)(z4 − x4)(2y2 − ax2 − az2)
(xz)3

,

transforms the quartic to the elliptic curve in Weierstrass form

Y 2 = X(X − 4a + 8)(X − 4a2 − 4a + 8).
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Table 3. Examples of maximal rank and Z/2Z× Z/2Z torsion

Rank A B

2 0 −1156
3 −962 148417
4 −13058 9450241
5 −21802898 108062188059601
6 −17838722 70235412808321
7 −35516402 310039977013297
8 −580951202 30945774466708897

Moreover, it can be shown that the value of a given by

a =
u4 + v4 + w4

u2v2 + u2w2 + v2w2

produces three rational points on the curve, for any u, v, w ∈ Q such that
the denominator is non-zero. After reducing the coefficients we obtain the
family

y2 = x3 − (u4 + v4 + w4)x2

+(u4 + v4 + w4 − u2v2 − u2w2 − v2w2)(u2v2 + u2w2 + v2w2)x

which has torsion group Z/2Z × Z/2Z and generic rank equal to 3. Using
values 1 ≤ u, v, w ≤ 100 we have found examples of elliptic curves of maximal
rank 2, 3, 4, 5, 6 and 7. Writing the curve as y2 = x3+Ax2+Bx the examples
are given in Table 3.

6.3. Examples with Z/4Z torsion subgroup. The highest known rank
for an elliptic curve with torsion group Z/4Z is 11, an example due to Elkies:

y2 = x3+759096648976404905x2+17354441376302316115327571785744384x.

However, the trivial bound equals 16, thus it is not of maximal rank.
In [Kihara 2004a] and [Kihara 2004b] it has been shown the existence of

an elliptic curve over Q(t) of rank 5 with a rational point of order 4. Since
we use variants of Kihara’s construction in order to obtain our examples
of maximal curves with torsion Z/4Z, we present a brief description of his
method.

The curve Y 2 = X3 + 2(a2 + b2)X2 + (a2 − b)2X has a torsion point of
order 4, namely P = (a2 − b, 2a(a2 − b)). The rational transformation

X =
(a2 − b)y2

x2
; Y =

(a2 − b)y(b + a(x2 + y2))
x3

shows that the curve is birationally equivalent to the quartic given by

b + (x2 − y2)2 + 2a(x2 + y2) = 0.
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Table 4. Examples of maximal rank and Z/4Z torsion

Rank A B

1 66 1
2 321 256
3 7105 1327104
4 21331 22325625
5 2205649 269336088576
8 2099985032881 306447571101199933440000

Now Kihara imposes that (r, s) and (r, u) are points in the quartic, which is
equivalent to solve a linear system in a, b. The appropriate values of a and
b are

a =
2r2 − s2 − u2

2
; b = s2u2 + s2r2 + u2r2 − 3r4.

Now he imposes new solutions given by (s, p), (u, q) and (p,m), which is
equivalent to solving a system of three quadratic equations. In [Kihara 2004a],
he gives a parametric solution of two of the equations and in [Kihara 2004b]
he is able to find parametric solutions for the full system, leading to the
construction of the surface E/Q(t) of rank 5. When the surface is written in
the form E : Y 2 = X3 + A(t)X2 + B(t)X, the coefficients A(t) and B(t) are
polynomials in t with degree 52 and 104 respectively, so even small values
of t result in huge values of A and B, and this is a great difficulty for the
computations.

For our search, we have used other similar parametrizations for the solu-
tion of the system of quadratic equations, producing several elliptic surfaces.
Then sieving along those families we have found the examples of maximal
rank that appear in Table 4. The ranks were verified using Magma.

6.4. Examples with Z/6Z torsion subgroup. For curves with a torsion
point of order 6 we use the model given in [Hadano 1977]:

y2 − 2(a + b)xy + 2aby + x3 = 0.

In Weierstrass form this is

Ea,b : y2 = x3 + (a2 + 2ab− 2b2)x2 + (b3(b− 2a))x

Notice that since Ea,b has a point of order 6, then there exists a 2-isogenous
curve E′

a,b and a 3-isogenous curve E′′
a,b. The 3-isogenous curve is given by

E′′
a,b : y2 = x3 + (a2 − 10ab− 2b2)x2 + ((2a− b)3b)x.

Searching among elliptic curves of the form Ea,b we have found examples
of maximal rank 0, 1, 2, 3 and 4. In Table 5 we list the coefficients A, B
that yield such curves. The corresponding 3-isogenous curves E′′

a,b are also
maximal of the same rank and also have torsion subgroup Z/6Z.
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Table 5. Examples of maximal rank and Z/6Z torsion

Rank A B

0 1 -1
1 13 11
2 541 60507
3 3061 15875
4 300133 -276401197

6.5. Other torsion subgroups. The remaining possibilities for torsion
subgroups with non-trivial 2 torsion are Z/NZ, with N = 8, 10 or 12, and
Z/2Z × Z/2MZ, with M = 2, 3 or 4. Finding examples of maximal rank
with any of these torsion subgroups seems challenging because of the size of
the coefficients of the known families with such torsion. In fact, the highest
known ranks (not necessarily maximal) are quite low for the same reason.

7. Statistics

7.1. The average rank in families of fixed Selmer rank. Let SN be
a finite set of elliptic curves E/Q such that Sb(E) = N and let RN =
{rankZ(E/Q) : E ∈ SN}. What is the mean value of the set RN? In this
section we provide some data related to this interesting question.

For each N = 2, 3, 4, 5, 6 we construct a sample set SN as follows. Let m
be a natural number and let d > 2 be real. Then SN is a set of all elliptic
curves of the form y2 = x3 + Ax2 + Bx, where the coefficients A and B
satisfy the following properties:

• Let M be the set formed by the first m odd natural numbers b which
are square-free, have exactly N−1 (odd) prime divisors, and 27b ≡ 2
mod 3;

• For each b ∈ M , put B = 27b and we let A be any positive integer
such that A ≡ 1 mod 4, A2−4B > 0 is prime and 2

√
B < A < d

√
B.

The numbers m and d are now chosen so that the set SN is of a reason-
able size in terms of computer power and computing time. For our calcula-
tions, we used the following values (N, m, d, t), where t indicates the com-
putation time in minutes: (2, 1544, 8, 217), (3, 1151, 8, 360), (4, 588, 8, 511),
(5, 289, 8, 1057) and (6, 118, 8, 2139). The computations were carried on a
Power Mac G5 with two 2.3 GHz processors, 1.5 Gb RAM memory, under
the Mac OSX 10.4.6 operating system and running Mathematica 5.1. with
programs written by the authors. Once the set SN is determined, we pro-
duced lower bounds for the algebraic rank by finding rational solutions in
the homogeneous spaces

C ′
d : Z2 = dU4 + AU2V 2 +

B

d
V 4
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Table 6. Lower estimates for the ranks in the families SN

Number of curves with rank at least

N |SN | 0 1 2 3 4 5 6

2 501911 420955 63582 17374
3 300957 184478 99402 5203 11874
4 207233 118749 32303 54174 40 1967
5 200117 75395 98629 3091 22800 202
6 202263 94527 31450 71006 109 5159 12

Table 7. The data in Table 6, taking into account the parity conjecture

Number of curves with rank at least

N |SN | 0 1 2 3 4 5 6 % A(N)

2 501911 420955 80956 16.13 0.32
3 300957 283880 17077 5.67 1.11
4 207233 118749 86477 2007 0.97 0.87
5 200117 174024 25891 202 0.10 1.26
6 202263 94527 102456 5268 12 0.006 1.12

for all square-free divisors d of B. In order to determine whether C ′
d(Q)

is non-empty, we tried the 439 pairs (U, V ) with 1 ≤ U, V ≤ 21 with
gcd(U, V ) = 1, and the pairs (1, k), (k, 1) with 1 ≤ k ≤ 101. Some re-
marks are in order:

(1) Notice that a curve E with coefficients A and B as above is of maxi-
mal Selmer rank N , by Corollary 3.7, so there is no need to calculate
the Selmer bound.

(2) Since A2 − 4B is prime there is no need to check the homogeneous
spaces corresponding to the isogenous curve E′.

(3) The sizes of S2 and S3 are significantly larger than the sizes of S4,
S5 and S6 because the calculations for N = 2 and N = 3 run quite
faster than in other higher cases, and we were able to study more
curves.

Tables 6 indicate the number of curves found in SN and lower bounds for
the rank. The symbol |SN | stands for the cardinality of the sample set SN .
Table 7 presents the same data but this time we take advantage of the parity
conjecture to increase the lower bounds. Table 7 also provides the percentage
of curves of maximal Mordell-Weil rank in SN and, A(N), a lower bound for
the average rank in the family.

For the sake of comparison, for i = 1, 2, 3, let Qi be the set of all elliptic
curves E/Q : y2 = x3 + Bx where 1 + 10000(i− 1) ≤ B ≤ 10000i and B is
fourth-power free. Also, let Qi,N , i = 1, 2, 3 and N ≥ 1 be the set formed
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Table 8. Ranks in the family y2 = x3 −Bx with 1 ≤ B ≤ 30000.

Number of curves with rank

S |S | 0 1 2 3 4 Av. Rank

Q1 9240 3667 3747 1677 144 5 0.81
Q1,2 2890 1266 1624 1.12
Q1,4 72 14 53 5 1.75
Q2 9240 3776 3706 1587 159 12 0.80
Q2,2 2991 1460 1531 1.02
Q2,4 94 26 56 12 1.70
Q3 9238 3704 3733 1623 168 10 0.81
Q3,2 3019 1469 1550 1.02
Q3,4 107 24 73 10 1.74

Table 9. Curves of maximal rank in the family E]

Curves of maximal rank

Number of curves 1 2 3 4 5 6 7 %

251904 381 5199 13471 9345 1998 141 3 12.12

by all the curves E in Qi such that Sb(E) = N . We exhibit a chart (Table
8) which describes the ranks found in Qi and Qi,2, Qi,4. Again, the ranks
shown are the analytic ranks, computed with Magma.

7.2. Families with large number of maximal curves. As we searched
for examples of curves with maximal rank, we have found several families
which seem to yield an unusual high percentage of maximal curves, and an
unusual number of curves of moderately high maximal rank. For example,
consider the curves of the form

E] : y2 = x3 + 2(a2 + b2)x2 − 8p(2p + a2 − b2)x,

with a, b ∈ Z and p prime. This family appears by forcing the points (−p, a)
and (q, b) to be on y2 = x3+Ax2+pqx and then normalizing the coefficients.

Using the method described in the previous section to study the families
SN , we have studied 251904 curves (non-singular and distinct) of the form
E], corresponding to 1 ≤ a, b ≤ 80 and the first forty primes p. When
the lower bound of the rank coincides with the Selmer rank, the curve is of
maximal algebraic rank. Table 9 indicates the number of curves of maximal
rank found for each rank between 1 and 7, together with a lower bound for
the percentage of maximal curves among those tested (the curves listed were
verified to have maximal rank but there may be more curves of maximal
rank which our sieve method did not detect).
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7.3. Open questions. As in many other instances in number theory, and
particularly in the theory of elliptic curves, the amount of data available is
not sufficient to support conjectures. However, the results presented in this
article and the data provided prompt the following natural questions:

• Are there elliptic curves of arbitrarily large maximal rank? This is
a question which is even more difficult to decide than whether there
are curves of arbitrarily high rank. If the latter holds, the former will
most likely be true as well. [Kretschmer 1986] has conjectured that
there exist elliptic curves E/Q of rank n, non-trivial torsion and with
bad reduction at most at n + 1 primes, for all n. His conjecture is
based on particular case of Corollary 3.7 and some empirical observa-
tions. Based on Theorems 4.3 and 4.5 there may exist elliptic curves
E/Q of rank N , non-trivial torsion and with bad additive reduction
at (N + 2)/2 primes if N is even, and (N + 3)/2 primes if N is odd.

• Fix a (large) natural number T and let {SN}∞N=1 be a collection of
sets SN as above, with fixed cardinality |SN | = T . Let

A(N) =
1
T

∑

E∈SN

rankZ(E/Q)

be the average rank in SN for each N ∈ N. What can we say about
the function A(N)? What is lim supN→∞A(N)? Tables 7 and 8
seems to indicate that A(2N) and A(2N+1) are increasing sequences.
If so, are they unbounded? The latter question is of course also
intimately related to the existence of curves with arbitrarily high
rank.
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