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Abstract. This paper is intended as an expository piece investigating an upper bound on
the rank of elliptic curves defined over Q. Let E/Q be an elliptic curve by a Weierstrass
equation of the form y2 = f(x) where f(x) is a cubic monic polynomial with integral
coefficients and with x2 term equal to 0. Let e1, e2, e3 be the roots of f(x) which we
assume to be distinct. Let K be the splitting field of f(x) over Q. We prove that
RE(Q) ≤ 2(ord2(h(K)) + r1 + r2 + ν(∆) − 1) where h(K) is the class number of K ,
r1 is the number of real embeddings of K into C, r2 is the number of pairs of non-real
embeddings of K into C, and ν(∆) is the number of prime ideals in the ring of integers
of K dividing the ideal generated by the discriminant of f(x). This bound is proven first
in a couple of special cases for the sake of intuition and then more generally. We also
investigate the usefulness of this bound through numerical examples and discuss cases in
which this bound can be made sharper.
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1. Introduction

The study of elliptic curves has long been an interesting topic to mathematicians since
Diophantus, a Greek mathematician who was interested among other things in rational
solutions to polynomials with integral coefficients, mainly quadratics and cubics. He ob-
served that given one solution to a quadratic, it was possible to obtain infinitely many, in
the following manner. Consider for example a circle described by the equation x2 +y2 = 1.
We know at least one rational solution to this equation right off the bat; observe that
(x, y) = (−1, 0) is one such solution. Next, we construct a straight line passing through
this point of rational slope. Begin with a general linear equation y = mx+b where m and b
are rational. Plugging in (x, y) = (−1, 0), we obtain 0 = −m+ b, or in other words, m = b.

1
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So the general equation of a line of rational slope m passing through the point (−1, 0) is
y = mx+m where m is any rational number we’d like. Next, we should take note that the
line we just created will intersect the circle in exactly two points and we already know one
of these points. The point (x, y) is in the intersection of this line with this circle exactly
when (mx+m)2 +x2 = 1. (This was obtained by plugging the equation of our line into the
equation of our circle). By expanding this, we see that (x, y) is in the intersection when
(m2 + 1)x2 + 2m2x+m2− 1 = 0. Thus, to find the other point at which the line intersects
the circle, we must find the second root of (m2 + 1)x2 + 2m2x+m2−1 = 0. Since we know
one root is −1, we can divide out a factor of x+ 1 to obtain (m2 + 1)x+ (m2 − 1) = 0, so
the other root occurs when x = 1−m2

1+m2 . Solving for y, we get that (x, y) =
(

1−m2

1+m2 ,
2m

1+m2

)
is

the other point of intersection of the line with the curve. Notice that since m is rational,
these expressions are rational numbers. The other point of intersection of the line with the
circle is, in particular, a point on the circle and thus satisfies the equation x2 + y2 = 1.
Thus for any choice of m, a rational number, we obtain

(
1−m2

1+m2 ,
2m

1+m2

)
which is a rational

solution to the equation x2 + y2 = 1, yielding infinitely many solutions to this quadratic.
Furthermore, this yields all rational solutions to the equation x2 + y2 = 1 because given

any rational point on the circle, we can find a line of the form y = mx + m which passes
through this point and (−1, 0) for some rational m.

In the context of the study of elliptic curves, the importance of this observation lies
in its generalization to cubics, as an elliptic curve is a “smooth” cubic equation in two
variables. While this method does not work in exactly the same way for cubics, there
is a very important generalization. Notice that in the quadratic case, once we knew one
solution and we picked a line passing through it of rational slope, there was exactly one
other point in the intersection of that line with the quadratic. However, a line intersects
a cubic in three points, not just two. For one thing, this means that in general, we are no
longer ensured any other rational points on a cubic simply from having one and drawing
a line through it of arbitrary rational slope; this is because if we draw an arbitrary line of
rational slope through a given rational point on the curve, then the set of points in the
intersection of the line with the curve are roots of a polynomial of the same degree as the
curve we began with and when one solution to a quadratic is rational, it is necessarily true
that the other root is rational 1, but when one solution to a cubic is rational, this tells us
nothing about whether the other two roots are rational. For example, we could consider
the elliptic curve defined by y2 = x3 − 3x. We can see that this has a rational solution at
(0, 0). Next take a line of arbitrary rational slope passing through (0, 0). For example, we
could take the line y = 0. The set of points in the intersection of this line with the curve
are the roots of x3 − 3x = 0, which has roots 0, and ±

√
3. So there are no other rational

points in the intersection of this line with the curve. In fact, (0, 0) is the only rational
point on this particular curve. So for this curve, if we take any line of rational slope going
through (0, 0), we will never get a pair of rational points as the other points of intersection
of the curve with the line.

1The reader should check that this is true.
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In order to generalize this method to cubics, we will need two (not necesarily distinct)2

rational solutions to begin with, and then if we draw the line connecting them, we will be
guaranteed a third rational solution. This seems much more restrictive. Before we only had
to choose one rational point on the curve and could choose infinitely many lines of rational
slope going through this point to obtain infinitely many new rational solutions. Now, we
must choose two points (or choose one point “twice”) and from them, we only get one
line instead of infinitely many, and thus we only get one new rational solution instead of
infinitely many. Furthermore, it is no longer obvious that we can obtain all rational points
on the curve in this way as it was in the quadratic case, and if it is true that we can obtain
all of them, can we start with just one as in the quadratic case or do we need more? How
many more? Can we start with finitely many rational points and produce all rational points
on the curve in this way? The answer to this non-trivial question was proved somewhat by
accident by Louis Mordell in 1923 and is presented here in the Mordell-Weil Theorem which
will be discussed in Section 2. Although the method of obtaining new rational points on
the curve from old ones appears very restrictive, this seemingly unyielding tool will provide
us with an unexpectedly rich and beautiful structure on elliptic curves, a structure that
has yet to be fully understood by modern mathematicians, and a structure in which this
paper will partially investigate.

2. The Group Law and the Mordell-Weil Theorem

In this section, we introduce the group law on elliptic curves. For our purposes, we will
define an elliptic curve3 to be a smooth cubic equation in two variables x, and y of the
form y2 = x3 + Ax+ B for A,B ∈ Z. This curve is said to be smooth when x3 + Ax+ B
has no repeated roots, or equivalently, when 4A3 + 27B3 6= 0. We are interested in finding
rational solutions to such equations.

In Section 1, we saw a way to obtain all rational solutions to a quadratic equation from
knowing only one rational solution. Ideally, we would like a way to obtain all rational
points on an elliptic curve. We saw that this was not quite as simple as the quadratic case.
However, we did see one way to produce new rational points on an elliptic curve from old
ones; given two rational points on an elliptic curve, we can draw a straight line connecting
them and then the third point of intersection of the line with the curve is a new rational
point on the curve. We could also begin with one point on the curve and draw the tangent
line through that point.

First we point out why it is true that if we take two rational points on the curve and
draw a line connecting them that the third point of intersection is rational. Also, if we
take one point and do the same using its tangent line, then the third point of intersection
is rational.

2These two points don’t have to be distinct. If they are the same point, the line connecting them is the
tangent line to the curve at that point.

3This is not the most general form of an elliptic curve, but it can be shown that any elliptic curve can
be written in this way via a change of variables. This form is known as Weierstrass form. In general, an
elliptic curve is simply a smooth cubic polynomial in two variables set equal to zero.
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First note that any straight line will intersect a cubic in exactly three points. Some of
these points may be complex, and in the case that the line is tangent to the curve at a
point, the point at which it is tangent will be repeated. Indeed if we plug y = mx+ b into
y2 = x3 + Ax + B, we get x3 + m2x2 + (A− 2mb)x + B + b2 = 0, so the points which lie
on both the line and the curve are the points (x,mx+ b) whose x-coordinates are roots of
this cubic. Vertical lines are an exception. If we plug in x = c, we get y2 = c3 + Ac + B,
which only has two roots. This is dealt with formally using projective geometry. Although
to simplify matters, we define the point at infinity, O, to be the third point of intersection
of a vertical line with an elliptic curve. With this convention, all lines intersect an elliptic
curve in exactly three points4.

Now suppose (x1, y1), (x2, y2) are rational points on a given elliptic curve, y2 = x3 +
Ax+B. That is x1, x2, y1, y2 ∈ Q and satisfy y2

1 = x3
1 +Ax1 +B and y2

2 = x3
2 +Ax2 +B.

Then the line connecting them is given by (y−y1) =
(
y2−y1
x2−x1

)
(x−x1) using the point-slope

formula. Equivalently, y = mx −mx1 + y1 where m =
(
y2−y1
x2−x1

)
. If we plug this into the

equation of our elliptic curve, then after some algebraic manipulation, we obtain

x3 −m2x2 + (A− 2my1 + 2m2x1)x+B − (y1 −mx1)2 = 0.
Thus, the points of intersection of the line with the curve have x-coordinate satisfying

this cubic equation. We already know two of the roots are x1 and x2, so if we factor
out (x − x1)(x − x2) we will be left with a linear equation in x, the root of which is the
x-coordinate of the third point of intersection of the line with the curve. Although, if we
are only trying to show that the third point of intersection is rational, this is unnecessary.
If we denote the third point of intersection (x3, y3), we get

x3 −m2x2 + (A− 2my1 + 2m2x1)x+B − (y1 −mx1)2 = (x− x1)(x− x2)(x− x3)

= x3 − (x1 + x2 + x3)x2 + (x1x2 + x1x3 + x2x3)x− x1x2x3

and we see by comparing the coefficients of x2 on each side of the equation that x1 +
x2 + x3 = m2. Solving for x3, we get x3 = m2 − x1 − x2. So if x1, x2, y1, y2 are rational,
then m is rational, and so x3 is rational. Then since y = mx−mx1 +y1, y3 is also rational.
A similar procedure can be done for the case when (x1, y1) = (x2, y2) and we consider the
tangent line to the curve at this point.

Notice that whenever we have a point (x, y) on an elliptic curve of the form y2 =
x3 +Ax+B, then (x,−y) is also a point on the curve because the only y in the equation
of our curve is squared. Also, if (x, y) is rational, so is (x,−y). If P = (x, y), we will use
the notation −P to mean (x,−y). We define −O to simply be O.

Definition 2.1. Let E be an elliptic curve defined by y2 = x3 +Ax+B. Let P = (x1, y1)
and Q = (x2, y2) be rational points on the curve. (That is, x1, y1, x2, y2 ∈ Q and y2

1 =
x3

1 +Ax1 +B and y2
2 = x3

2 +Ax2 +B). Let R = (x3, y3) be the third point of intersection of

4These three points are possibly complex and possibly repeated
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Figure 1. Addition of points on an elliptic curve

the curve with line through P and Q. (If P = Q, this is the third point of intersection of the
curve with the tangent line to the curve at this point). Then we define the sum of P and
Q to be P +Q = −R as illustrated in figure 1. For m ∈ N, we define mP = P +P + ...+P
(m times) and −mP = −P − P − ...− P (m times).

Theorem 2.2. The set of rational points on an elliptic curve together with the addition
defined above form an abelian group where the identity is the point at infinity, O.

We will not prove this theorem here, but instead we refer the reader to [Sil09]. Most of
the proof is relatively straight forward with the exception of associativity which is slightly
more involved. In this group, notice that the inverse of a point P is −P since the line
connecting (x, y) and (x,−y) is vertical, so the third point of intersection is O. Thus
P − P = −O = O.

Example 2.3. Let E be the elliptic curve defined by y2 = x3 + 1. We can see that
P = (0, 1) and Q = (−1, 0) are points on this curve. To get another point, we could add
P+Q. First notice that the line connecting P and Q is described by the equation y = x+1.
So first we must find the third point of intersection of the curve with this line. We do so
by plugging the equation for the line into the equation for the curve.

x3 + 1 = (x+ 1)2 = x2 + 2x+ 1
=⇒ x3 − x2 − 2x = 0

We already know two roots of this, namely, the x-coordinates of the two points we
started with, −1 and 0. So we can factor out the roots we know and we could obtain via
long division
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x3 − x2 − 2x = x(x+ 1)(x− 2).
So the third point of intersection of the line with the curve occurs when x = 2. Plugging

into our linear equation for y, we get y = 3, so R = (2, 3) is a point on the curve. If we
check our work, 33 = 23 + 1, which confirms that this point is on the curve. Then the sum
of P and Q is −R = (2,−3). Thus P +Q = (2,−3).

Naturally, Theorem 2.2 raises some questions about the structure of elliptic curves, that
is, about the structure of the group associated to an elliptic curve. Is this group finite
or infinite? If it is infinite, is it at least finitely generated? If so, how do we find the
generators? Is there an easy way to figure out what the group associated to a given curve
is simply from knowing the coefficients A and B?

Modern mathematicians know the answers to some of these questions, but not everything
is known. For example, we do not yet know how to completely determine the group
associated to a given elliptic curve.

One very important theorem about the structure of this group was proven by Louis
Mordell (and later generalized by André Weil). We will present this theorem here without
proof.

Theorem 2.4 (Mordell-Weil). The group associated to an elliptic curve is a finitely gen-
erated abelian group. In other words, there exist finitely many rational points on the curve
P1, P2, ..., Pn, such that any rational point on the curve, Q, is a linear combination of these
points, so Q = m1P1 +m2P2 + ...+mnPn for some m1,m2, ...,mn ∈ Z.

We will call the group associated to an elliptic curve the Mordell-Weil group and denote
it E(Q).

Corollary 2.5. By the fundamental theorem of finitely generated abelian groups, E(Q) ∼=
T ⊕ ZRE(Q) where T is a finite abelian group and RE(Q) ∈ Z such that RE(Q) ≥ 0.

Definition 2.6. RE(Q) is the rank of an elliptic curve.

Definition 2.7. The set of points of finite order, T = {P ∈ E(Q) : mP = O for some m ∈
Z} is called the torsion part or the torsion subgroup. A point P ∈ E(Q) of finite order is
called a torsion point.

Definition 2.8. E(Q)/T is called the free part of the Mordell-Weil group.

Example 2.9. Can we find the Mordell-Weil group of the curve considered in Example
2.3, y2 = x3 + 1? In example 2.3, we saw that (0, 1), (−1, 0), (2, 3) ∈ E(Q). Taking the
inverses of these points we also get (0,−1), (2,−3) ∈ E(Q). Can we find any more points?

Let P = (2, 3). To compute 2P , we will take the derivative at P in order to find an
equation of the tangent line.

y2 = x3 + 1

=⇒ 2ydy = 3x2
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=⇒ dy

dx
=

3x2

2y

Evaluating at P = (2, 3), we get 3×22

2×3 = 12
6 = 2 so the slope of the tangent line through

P is 2. Setting y = 2x + b and plugging in P = (2, 3), we obtain b = −1, so the tangent
line to the curve at P is defined by y = 2x− 1.

Plugging this into our equation for the curve, we get

(2x− 1)2 = x3 + 1

=⇒ x3 − 4x2 + 4x = 0

=⇒ x(x− 2)2 = 0

So the third point of intersection has x-coordinate 0 and y = 2x− 1, so the third point
of intersection is (0,−1), so 2P = (0, 1), which was a point we already knew.

If we continue in this fashion (which is left as an exercise), we will see that for P = (2, 3),

2P = (0, 1)

3P = (−1, 0)

4P = (0,−1)

5P = (2,−3)

6P = O
so all of the points we have seen so far are part of the torsion subgroup since they are of

finite order. This tells us that for this curve, Z/6Z is a subgroup of the Mordell-Weil group.
However, we do not yet have the tools to figure out much more about the Mordell-Weil
group for this curve.

There are many unanswered questions about this example. How do we know whether
there are more generators? Is T ∼= Z/6Z or are there more torsion points? Are there any
points of infinite order, and if there were, how would we recognize them?

Next, we address those questions having to do with the torsion points. These are the
easier questions to answer. Many questions about the rank or the free part of the Mordell-
Weil group are still not known.

In this section we focus on T = {P ∈ E(Q) : mP = O for some m ∈ Z}, the torsion
part of the Mordell-Weil group. To better understand the torsion part, we introduce the
Nagell-Lutz theorem and Mazur’s theorem, which we will state here without proof. A more
detailed discussion can be found in [Sil09] or [LR].

Theorem 2.10 (Nagell-Lutz). Let E be an elliptic curve defined by y2 = x3 +Ax+B for
A,B ∈ Z. If P = (x0, y0) ∈ E(Q) is a torsion point, then P satisfies the following.

(1) The coordinates of P are integers. (i.e x0, y0 ∈ Z)
(2) If P is of order 2, then y0 = 0 and x3

0 +Ax0 +B = 0
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(3) If P is a point of order n ≥ 3, then y2
0|∆ where ∆ is the discriminant5 of x3+Ax+B

for A,B ∈ Z.

Corollary 2.11. If for some P ∈ E(Q), there exists m ∈ Z such that mP does not have
integer coefficients, then P has infinite order in E(Q).

Corollary 2.12. Given P = (x0, y0) ∈ E(Q), if y0 6= 0 and y2
0 - ∆, then P has infinite

order.

The Nagell-Lutz theorem is very useful to show that a given point has infinite order
and also to completely determine the torsion subgroup. Let’s revisit our previous example
applying the Nagell-Lutz theorem to determine the torsion subgroup.

Example 2.13. Recall that we were working over the elliptic curve defined by y2 =
x3 + 1 and we found that P = (2, 3), 2P = (0, 1), 3P = (−1, 0), 4P = (0,−1), 5P =
(2,−3), and 6P = O were all points on the curve which showed that the torsion subgroup,
T has a subgroup isomorphic to Z/6Z, but we could not tell if there were any more torsion
points on the curve.

The discriminant of x3 +Ax+B is ∆ = −4A3 − 27B2, so the discriminant of x3 + 1 is
−27. Thus by the Nagel-Lutz theorem, if (x, y) is a torsion point, then y = 0 or y2| − 27.
So for a torsion point (x, y), the possible values of y are 0,±1,±3.

We saw that if y = 0, then x3 = −1 has only one real solution, which gave us the point
(−1, 0). When y = ±1, we have x = 0 which gives us (0, 1). When y = ±3, 9 = x3 + 1,
which has one real solution x = 2.

These are all the points we already had and there are no more values of y such that
y2| − 27. Thus, we have tested all possible y coordinates of rational points on the curve
of finite order, so this tells us by the Nagell-Lutz theorem that P = (2, 3), 2P = (0, 1),
3P = (−1, 0), 4P = (0,−1), 5P = (2,−3), and 6P = O are the only points of finite order
on this curve. Therefore the torsion subgroup of the Mordell-Weil group of this curve is
isomorphic to Z/6Z.

Although we have successfully nailed down the torsion subgroup of this curve, we still
don’t know the complete Mordell-Weil group because we do not yet have the tools to
understand the points of infinite order.

Example 2.14. As another application of the Nagell-Lutz theorem, consider the elliptic
curve E defined by y2 = x3 − 2. We can see that P = (3, 5) is a point on the curve. If we
compute 2P , we will see that 2P =

(
129
100 ,

−383
1000

)
, which does not have integer coefficients so

P is of infinite order.
Alternatively, we could have computed ∆ = −108 so since 5 6= 0 and 52 - −108, this also

shows P has infinite order.
In particular, the fact that we have shown that there exists a point of infinite order

in E(Q) tells us that the rank of E, RE(Q) 6= 0, so RE(Q) ≥ 1, so in particular, E(Q) is
infinite.

5The discriminant of f(x) = (x− e1)(x− e2)(x− e3) is ∆ = ((e1 − e2)(e1 − e3)(e2 − e3))2. In the case
that f is of the form x3 +Ax+B for integers A,B, it can be shown that ∆ = −4A3 − 27B2. In particular
this makes it clear that ∆ ∈ Z when f is of the form x3 +Ax+B



A BOUND ON THE RANK OF ELLIPTIC CURVES 9

Curve Torsion Generators
y2 = x3 − 2 trivial O
y2 = x3 + 8 Z/2Z (−2, 0)
y2 = x3 + 4 Z/3Z (0, 2)
y2 = x3 + 4x Z/4Z (2, 4)

y2 − y = x3 − x2 Z/5Z (0, 1)
y2 = x3 + 1 Z/6Z (2, 3)

y2 = x3 − 43x+ 166 Z/7Z (3, 8)
y2 + 7xy = x3 + 16x Z/8Z (−2, 10)

y2xy + y = x3 − x2 − 14x+ 29 Z/9Z (3, 1)
y2 + xy = x3 − 45x+ 81 Z/10Z (0, 9)

y2 + 43xy − 210y = x3 − 210x2 Z/12Z (0, 210)
y2 = x3 − 4x Z/2Z× Z/2Z (2, 0), (0, 0)

y2 = x3 + 2x2 − 3x Z/2Z× Z/4Z (3, 6), (0, 0)
y2 + 5xy − 6y = x3 − 3x2 Z/2Z× Z/6Z (−3, 18), (2,−2)

y2 + 17xy − 120y = x3 − 60x2 Z/2Z× Z/8Z (30,−90), (−40, 400)
Table 1. Table taken from [LR]

There is another very useful theorem about the torsion subgroup proven by Mazur which
says that there are only 15 particular groups which will ever arise as the torsion subgroup
of the Mordell-Weil group of an elliptic curve.

Theorem 2.15 (Mazur). The torsion subgroup of the Mordell-Weil group of an elliptic
curve is isomorphic to one of the following:

(1) Z/NZ for 1 ≤ N ≤ 10 or N = 12,
(2) Z/2Z× Z/2NZ for 1 ≤ N ≤ 4.

Corollary 2.16. For P ∈ E(Q), if mP 6= O for 1 ≤ m ≤ 12, then P has infinite order.
This is because all points of finite order must be of order no more than 12.

Furthermore, all of these groups do actually arise as the torsion part of the Mordell-Weil
group of some elliptic curve. Table 1, taken from [LR], gives examples of elliptic curves
which have each of the possible torsion subgroups.

The rest of the Mordell-Weil group is considerably less understood than the torsion part.
In fact, given an arbitrary elliptic curve, there is no known algorithm to even tell us the
rank of the curve. There are algorithms which work for some curves. (For a more extensive
discussion of this see [LR]). There are also various ways to bound the rank of an arbitrary
elliptic curve.

Furthermore, it has been conjectured that there exist elliptic curves of arbitrarily high
rank and yet the curve of the highest rank anyone has ever found, discovered by Noam
Elkies in 2006, could have rank as low as 28. It has been shown that the rank of this curve
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is at least 28 and no elliptic curve has ever been found whose rank can be proven to be
greater than this. A table of elliptic curve rank records can be found at [Duj].

To find a lower bound on the rank, consider a curve E. If we have n points on E which
we can show to be linearly independent6, then RE(K) ≥ n. Linear independence of points
on elliptic curves can be shown using the Néron-Tate pairing, which will not be discussed
here. Instead, we refer the reader to [LR] for a discussion of the Néron-Tate pairing and
showing linear independence of points.

This paper focuses on proving an upper bound on the rank of elliptic curves. It is shown
first in specific cases and finally in Section 5, it is shown for an arbitrary elliptic curve.

3. A Restricted Case

Our goal is ultimately to prove an upper bound on the rank of elliptic curves defined
over Q. However, for the sake of simplicity and intuition, we begin with a restriction on the
set of curves we consider. Let E be an elliptic curve defined by the Weierstrass equation
y2 = f(x) where f(x) = x3 +Ax+B for A,B ∈ Z. Let K denote the splitting field of f(x)
over Q and let h(K) denote the class number of K. We denote the ring of integers of K
by OK . The case we would like to consider in this section is the case in which h(K) = 1.
This condition gives us unique prime factorization in OK , or equivalently7, it gives us that
OK is a principal ideal domain. This will provide us with the necessary tools for a sleek
intuitive proof of this bound.

The reader should note that what is presented in this section is only a slight modification
of what is shown in Section 2.8 of [LR], where the same bound is proven in the case where
K = Q. However, generalizing to the case where K 6= Q necessarily, but still assuming
h(K) = 1 does not change very much. The key property of K being used in [LR] is that
OK has unique prime factorization, which is true for any number field K of class number
one.

The method for proving this bound begins by considering a certain homomorphism, δ
defined out of E(K), the set of points in K2 which satisfy the equation defining the curve.
This homomorphism will induce an injection from E(K)/ ker(δ) into image(δ) so if we can
show that the size of image(δ) is finite, then we can use this injection to bound the size of
E(K)/ ker(δ) by the size of image(δ), which we will then use to bound the size of the rank
of E(K).

Theorem 3.1. Let E be an elliptic curve defined by the Weierstrass equation y2 = f(x)
where f(x) = x3 +Ax+B for A,B ∈ Z with distinct roots e1, e2, e3. Let K = Q[e1, e2, e3]
be the splitting field of f(x).

Let P = (x0, y0) ∈ E(K). We define a map δ : E(K)→ (K×/(K×)2)3 by

6A set of points {P1, P2, ..., Pn ∈ E(Q)} are linearly independent over Z if m1P1 +m2P2 + ...+mnPn 6= 0
for any m1,m2, ...,mn ∈ Z.

7These conditions are equivalent because OK is a Dedekind domain.
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δ(P ) =


(1, 1, 1) if P = O,
(x0 − e1, x0 − e2, x0 − e3) if y0 6= 0,
((e1 − e2)(e1 − e3), e1 − e2, e1 − e3) if P = (e1, 0),
(e2 − e1, (e2 − e1)(e2 − e3), e2 − e3) if P = (e2, 0),
(e3 − e1, e3 − e2, (e3 − e1)(e3 − e2)) if P = (e3, 0).

Then δ is a homomorphism with ker(δ) = 2E(K)

Remark 3.2. Note that x3 + Ax + B = (x − e1)(x − e2)(x − e3), so comparing x2 terms,
e1 + e2 + e3 = 0.

Remark 3.3. Note that if δ(P ) = (δ1, δ2, δ3), then δ1δ2δ3 = 1 in K×/(K×)2 so image(δ)
can be embedded into (K×/(K×)2)2.

Proof. Most of this proof is taken from [LR] with the slight modification that K is not
necessarily equal to Q, but still assuming h(K) = 1.

First, we show that δ is a homomorphism. Let P = (x0, y0) and Q = (x1, y1) be points on
E(K). Note that δ(x0, y0) = δ(P ) = δ(−P ) = δ(x0,−y0) because δ does not depend on the
sign of y. So to show δ(P )δ(Q) = δ(P+Q) is the same as to show δ(P )δ(Q) = δ(−(P+Q)).

Let R = −(P + Q) = (x2, y2). First we assume yi 6= 0 for i = 1, 2, 3. The points P,Q,
and R are collinear, so let L = PQ be the line connecting the three points and suppose it
has the equation y = ax + b. Substituting y into the equation for the curve, we obtain a
polynomial,

p(x) = (ax+ b)2 − (x− e1)(x− e2)(x− e3).
The roots of p(x) are exactly the x-coordinates of P , Q, and R, namely, x0, x1, and x2.

Hence p(x) factors as

p(x) = (ax+ b)2 − (x− e1)(x− e2)(x− e3) = (x0 − x)(x1 − x)(x2 − x)

Evaluating p(x) at ei, we obtain,

p(ei) = (aei + b)2 = (x0 − ei)(x1 − ei)(x2 − ei).
Thus,

δ(P )δ(Q)δ(R)

= (x0 − e1, x0 − e2, x0 − e3)× (x1 − e1, x1 − e2, x1 − e3)× (x2 − e1, x2 − e2, x2 − e3)

= ((x0 − e1)(x1 − e1)(x2 − e1), (x0 − e2)(x1 − e2)(x2 − e2), (x0 − e3)(x1 − e3)(x2 − e3))

= ((ae1 + b)2, (ae2 + b)2, (ae3 + b)2)

= (1, 1, 1) ∈ K×/(K×)2

Thus δ(P )δ(Q)δ(R) = 1 in K×/(K×)2. Multiplying both sides by δ(R), we obtain
δ(P )× δ(Q) = δ(R), i.e. δ(P )× δ(Q) = δ(−(P +Q), which completes the proof that δ is
a homomorphism in the case when yi 6= 0 for i = 1, 2, 3.
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There are three more cases to consider. Either yi = 0 for exactly one of i = 1, 2, or 3 or
yi = 0 for i = 1, 2 and 3, or one of the points is O.

Next we consider the case when yi = 0 for exactly one of i = 1, 2, or 3. Recall that
we need to show δ(P )δ(Q)δ(R) = 1 in K×/(K×)2. Without loss of generality suppose
that y0 = 0. Then x0 = ei for some i = 1, 2, 3. Without loss of generality, let x0 = e1.
So P = (x0, y0) = (e1, 0). Then one can check that the line connecting P , Q, and R is
y =

(
y1

x1−e1

)
(e1 − x). Substituting this into our equation of the curve as in the previous

case, we obtain a polynomial,

p(x) =
(

y1

x1 − e1

)2

(e1 − x)2 − (x− e1)(x− e2)(x− e3).

Again, the roots of p(x) are exactly the x-coordinates of P ,Q, and R, namely, x0 = e1,x1,
and x2. Hence p(x) factors as

p(x) =
(

y1

x1 − e1

)2

(e1 − x)2 − (x− e1)(x− e2)(x− e3) = (e1 − x)(x1 − x)(x2 − x).

Dividing by (e1 − x), we obtain

(
y1

x1 − e1

)2

(e1 − x) + (x− e2)(x− e3) = (x1 − x)(x2 − x).

Then evaluating at x = e1,

(e1 − e2)(e1 − e3) = (x1 − e1)(x2 − e1).

Thus,

δ(P )δ(Q)δ(R)

= ((e1 − e2)(e1 − e3), e1 − e2, e1 − e3)× (x1 − e1, x1 − e2, x1 − e3)× (x2 − e1, x2 − e2, x2 − e3)

= ((e1 − e2)(e1 − e3)(x1 − e1)(x2 − e1), (x0 − e2)(x1 − e2)(x2 − e2), (x0 − e3)(x1 − e3)(x2 − e3))

= (((e1 − e2)(e1 − e3))2, (ae2 + b)2, (ae3 + b)2)

= (1, 1, 1) ∈ K×/(K×)2

which completes this case.
Next consider when yi = 0 for i = 1, 2, and 3. Then without loss of generality, x0 = e1,

x1 = e2, x2 = e3 and again, we wish to show δ(P )δ(Q)δ(R) = 1 in K×/(K×)2. Then,
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δ(P )δ(Q)δ(R) = ((e1 − e2)(e1 − e3), e1 − e2, e1 − e3)

× (e2 − e1, (e2 − e1)(e2 − e3), e2 − e3)

× (e3 − e1, e3 − e2, (e3 − e1)(e3 − e2))

= (((e1 − e2)(e1 − e3))2, ((e2 − e1)(e2 − e2))2, ((e3 − e1)(e3 − e2))2)

= (1, 1, 1) ∈ K×/(K×)2.

Next, we consider the case when one of these points is O. Let P = O without loss of
generality. Then the line connecting Q and R is vertical, so if x1 = x2 and y1 = −y2.
Then,

δ(P )δ(Q)δ(R) = (1, 1, 1)× (x1 − e1, x1 − e2, x1 − e3)× (x2 − e1, x2 − e2, x2 − e3)

= ((x1 − e1)(x2 − e1), (x1 − e2)(x2 − e2), (x1 − e3)(x2 − e3))

= ((x1 − e1)2, (x1 − e2)2, (x1 − e3)2)

= (1, 1, 1) ∈ K×/(K×)2.

which completes the proof that δ is a homomorphism.
Next, we show that ker(δ) = 2E(K). It is clear that 2E(K) ⊆ ker(δ) since δ is a

homomorphism; δ(2P ) = (δ(P ))2 = 1. Next we need to show the reverse containment.
Let Q = (x1, y1) ∈ ker(δ). Then Q ∈ E(K) such that δ(Q) = (1, 1, 1) in K×/(K×)2.

We need to show there exists some P = (x0, y0) ∈ E(K) such that Q = 2P . It is enough
to show that x0 = x1 since then Q = ±P .

Working out the arithmetic of adding two points on the curve, we obtain a duplication
formula for x-coordinate of elliptic curves. This is taken from [LR], Exercise 2.11.16.
Denoting the x-coordinate of a point P ∈ E(K) by x(P ), the duplication formula says that
x(Q) = x(2P ) when

x1 = x(2P ) =
x4

0 − 2Ax2
0 − 8Bx0 +A2

4y2
0

.

Here, we only show the case in which y1 6= 0. The remaining cases are left to the reader.
Then δ(Q) = (1, 1, 1) in K×/(K×)2 implies that x0 − ei is a square for i = 1, 2, 3. Let
x0 − ei = t2i for some ti ∈ K×.

Define p(x) ∈ K[x] by

t1
(x− e2)(x− e3)

(e1 − e2)(e1 − e3)
+ t2

(x− e1)(x− e3)
(e2 − e1)(e2 − e3)

+ t3
(x− e1)(x− e2)

(e3 − e1)(e3 − e2)
.

This polynomial is designed so that p(ei) = ti. Notice that p(x) is a quadratic, so let
p(x) = a+ bx+ cx2. Define q(x) = x1 − x− p(x)2. Then

q(ei) = x1 − ei − t2i = 0
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for i = 1, 2, 3. Thus (x− ei) divides q(x) for each of these i. Thus (x− e1)(x− e2)(x−
e3) = x3 + Ax + B = f(x) divides q(x). In other words, q(x) ≡ 0 modulo f(x). Thus
x1 − x ≡ p(x)2 ≡ (a+ bx+ cx2) mod f(x). If we expand the right hand side, we get that
x1 − x ≡ c2x4 + 2bcx3 + (2ac+ b2)x2 + 2abx+ a2.

Next notice that x3 ≡ −Ax − B and x4 ≡ −Ax2 − Bx. Then, substituting this and
recollecting terms, we get x−x1 ≡ (2ac+ b2−Ac2)x2 + (2ab−Bc2− 2Abc)x+ (a2− 2bcB)
mod f(x). Thus x−x1− ((2ac+b2−Ac2)x2 +(2ab−Bc2−2Abc)x+(a2−2bcB)) ≡ 0 mod
f(x). Thus f(x) divides x−x1− ((2ac+ b2−Ac2)x2 + (2ab−Bc2−2Abc)x+ (a2−2bcB)),
which is a polynomial of degree at most two. Since f(x) is of degree three, this means
x − x1 − ((2ac + b2 − Ac2)x2 + (2ab − Bc2 − 2Abc)x + (a2 − 2bcB)) = 0, or equivalently,
x− x1 = ((2ac+ b2−Ac2)x2 + (2ab−Bc2− 2Abc)x+ (a2− 2bcB)). Matching coefficients,
we see that

2ac+ b2 −Ac2 = 0(1)

2ab−Bc2 − 2Abc = −1(2)

a2 − 2bcB = x1.(3)

If c = 0, then b = 0 by equation (1). Then p(x) = a is constant so t1 = t2 = t3. Since
t2i = x1−ei by definition, it follows that e1 = e2 = e3, which would make the curve singular
and is thus a contradiction. Thus c 6= 0. Multiplying equation (2) by 1

c2
and equation (1)

by b
c3

, we get

2ab
c2
−B − 2Ab

c
=
−1
c2

(4)

2ab
c2

+
b3

c3
− Ab

c
= 0(5)

Subtracting equation (4) from equation (5), we get

(6)
(
b

c

)3

+A

(
b

c

)
+B =

(
1
c

)2

.

Thus the point P = (x0, y0) =
(
b
c ,

1
c

)
is on the curve. Since p(x) ∈ K[x], a, b, c ∈ K, so

P ∈ E(K).
From equation (5), we can deduce that a = A−x2

0
2y0

. Substituting this into equation (3),
we get
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x(Q) = x1 =
(
A− x2

0

2y0

)2

− 2bcB

=
(A2 − 2Ax2

0 + x4
0)− (2bcB)(4y2

0)
4y2

0

=
(A2 − 2Ax2

0 + x4
0)− (2bcB)( 4

c2
)

4y2
0

=
(A2 − 2Ax2

0 + x4
0)− 8Bx0

4y2
0

=
x4

0 − 2Ax2
0 − 8Bx0 +A2

4y2
0

= x(2P )

The case in which y1 = 0 is left to the reader. �

Corollary 3.4. δ induces an injection,

E(K)/2E(K) ↪→ (K×/(K×)2)2

Proof. This follows from Theorem 3.1 together with the remark that image(δ) can be
embedded into (K×/(K×)2)2. �

Our goal is to show that image(δ) can be embedded into something finite in order to
bound the rank. (K×/(K×)2)2 is not finite, so we are not quite done. However, the image
of δ is in fact much smaller than (K×/(K×)2)2. The next proposition shows that the only
primes in K× which can divide the square-free parts of the elements of the image of δ are
those dividing the discriminant of the curve. (See Examples 2.8.2 and 2.8.4 in [LR] for an
example of this). Thus showing image(δ) is in fact finite.

Proposition 3.5. Let E be the elliptic curve defined over Q by y2 = f(x) where K is
the splitting field of f(x) and let e1, e2, e3 ∈ K be the roots of f(x) as before. Suppose
h(K) = 1. Let P = (x0, y0) ∈ E(Q) and let

(x0 − e1) = au2

(x0 − e2) = bv2

(x0 − e3) = cw2

where u, v, w ∈ K× and where a, b, c ∈ OK are square-free. Then if p|abc then p|∆ where
∆ = (e1 − e2)(e1 − e3)(e2 − e3) and where p is a prime element of OK
Remark 3.6. It only makes sense to take a, b, c to be square-free because h(K) = 1 so
OK has unique prime factorization. Without unique prime factorization, the notion of a
“square-free” element of OK becomes unclear. This will be addressed in Section 4



16 CHRISTINE MCMEEKIN

Remark 3.7. Note that abc is a square in OK since (x0 − e1)(x0 − e2)(x0 − e3) = y2
0 so

abc(uvw)2 = y2
0

Remark 3.8. Also note that ∆ ∈ OK because ei ∈ OK for each i.

A similar proposition is proven on pages 55-56 of [LR] as Proposition 2.8.5. Here, K = Q,
but a similar argument shows that this proposition holds for any K so long as h(K) = 1.
The key property used in this proof is that OK has unique factorization when K = Q, but
this is true of any K such that h(K) = 1.

We are now fully equipped to show that image(δ) can be embedded into something finite.

Corollary 3.9. Let r1 be the number of real embedings of K into C and let r2 be the
number of pairs of non-real embedings of K into C. Let {pi}1≤i≤n be the set of primes in
OK dividing ∆ and let {ui}0≤i≤r1+r2−1 be a set of generators of the unit group, OK×. Let
Γ = {ua0

0 ...u
ar1+r2−1

r1+r2−1 p
t1
1 ...p

tn
n : ai, ti ∈ Z/2Z}. Then δ induces an injection

E(K)/2E(K) ↪→ Γ2

Proof. Any unit u ∈ OK× is of the form ua0
0 ...u

ar1+r2−1

r1+r2−1 by Dirichlet’s Unit Theorem. The
rest is a result of the previous proposition and corollary 3.4. �

Corollary 3.9 is very useful, because now we know that the size of E(K)/2E(K) is at
most the size of Γ2, which is finite. Next, an examination of the structure of E(K)/2E(K)
will allow us to bound the rank.

The Mordell-Weil theorem states that E(K) is a finitely generated abelian group, so by
the fundamental theorem of finitely generated abelian groups,

E(K) ∼= T × ZRE(K)

where T is the torsion subgroup (i.e. T is a finite group).
So what is the structure of E(K)/(2E(K))? We know that (e1, 0), (e2, 0), (e3, 0) ∈ E(K)

by the definition of K being the splitting field of f(x), and any point of this form is of
order exactly 2 (one can easily check this from the definition of addition), which means
that T must have exactly 3 points of order 2. Thus T is not cyclic, so by Mazur’s theorem,

T ∼= Z/2Z× Z/2MZ for M = 1, 2, 3, or 4.
Therefore T has two generators, both of which are of even order. When we take T/2T ,

all even multiples of these generators become O and all odd multiples of these generators
are now in a single class. So ultimately, we are left with Z/2Z× Z/2Z.

To understand what happens to the free part after taking this quotient, again look at
the generators. There are RE(K) generators of the free part. Again, the even multiples of
each of them become O and the odd multiples are now in a single class. So the free part
becomes (Z/2Z)RE(K) .

So overall, E(K)/2E(K) ∼= (Z/2Z)2+RE(K) . Therefore, |E(K)/2E(K)| = 2(2+RE(K)).
We are now ready to prove our bound.
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Theorem 3.10. Let E be an elliptic curve defined by the Weirestrass equation y2 = f(x) =
x3 + Ax+B where A,B ∈ Z. Let K be the splitting field of f(x) and let e1, e2, e3 ∈ K be
the roots of f(x) as before. Assume that h(K) = 1. Let ν(∆) be the number of primes in
OK dividing ∆ and let r1 be the number of real embeddings of K into C and let r2 be the
number of pairs of non-real embeddings of K into C as in Corollary 3.9. Then,

RE(K) ≤ 2(r1 + r2 + ν(∆)− 1)

Proof. Counting elements of Γ, we can see that

|Γ| = 2r1+r2+ν(∆).

So since E(K)/2E(K) ↪→ Γ2 by Corollary 3.9, |E(K)/2E(K)| ≤ |Γ2|, which means

2(2+RE(K)) ≤ 22(r1+r2+ν(∆))

=⇒ 2 +RE(K) ≤ 2(r1 + r2 + ν(∆))

=⇒ RE(K) ≤ 2(r1 + r2 + ν(∆)− 1)

proving the bound.
�

4. Odd Class Number and Canonical Factorization

Next, we generalize to the case when h(K) is only assumed to be odd. The proof of
the bound in this case is similar to the previous case. However, Proposition 3.5 relied on
unique factorization and we can no longer assume that OK has unique prime factorization,
so in this section we introduce the concept of a “canonical factorization”8 of elements in
OK raised to the power of the class number, which leads to a sort of generalization of the
notion of square-free parts of elements as far as we are concerned with this notion.

Example 4.1. let K = Q[
√

79]. Then h(K) = 3 and OK = Z[
√

79]. In OK , 45 can be
factored into the product of irreducible elements in two ways.

45 = 32 × 5

45 = 3× (
√

79 + 8)× (
√

79− 8)

One can check that 3, 5, (
√

79 + 8), and (
√

79 + 8) are all irreducible. If we only saw the
second factorization, we might be naively tempted to say that 45 is “square-free” because
it is the product of distinct irreducibles, but the first factorization tells us that there is
indeed a square dividing 45.

8This is not standard terminology.
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A natural question to consider is what this notion of “square-free” actually means when
we cannot assume unique factorization. One might be tempted to try the quick-fix of
defining an element to be square-free when there does not exist an irreducible element
whose square divides it, but perhaps even more troublesome is the notion of the square-
free part of an element. Consider the following example.

Example 4.2. Consider the element α = 360+45
√

79 ∈ OK . Using this quick-fix definition
of square-free, what is the square-free part of α? Notice that α = 45× (

√
79 + 8), so from

our previous two factorizations of 45, we obtain two factorizations of α.

α = 32 × 5× (
√

79 + 8)

α = 3× (
√

79 + 8)2 × (
√

79− 8).

The first factorization suggests that 5× (
√

79 + 8) is the square-free part and the second
factorization suggests that 3× (

√
79− 8) is the square-free part and indeed both of these

satisfy the quick-fix definition of square-free and divide α.

This example tells us we still have ambiguity in the notion of square-free parts of elements
when the class number is higher than one. For this reason, we will need something more.

The reader should check that if we define a map9 from K× into K×/(K×)2 in the
natural way, this map is well-defined for arbitrary K. So it does make sense to consider
K×/(K×)2 regardless of whether or not we have unique factorization. The trouble arises
in deterministically choosing a representative of K×/(K×)2 for class number higher than
one.

When h(K) = 1 and we take the square-free part of an element a ∈ OK , what we
are doing is pinning down a unique10 representative of the class of a in K×/(K×)2 in
a deterministic fashion. The reason our previous attempt at generalizing the notion of
square-free parts failed is because it failed to pin down a unique representative of the
equivalence class of α in K×/(K×)2. Thus, our goal will be to devise a way to choose a
unique representative of a given equivalence class in K×/(K×)2.

Coming back to our failed quick-fix generalization of the notion of square-free parts, no-
tice that if we had a deterministic way to choose one factorization of an element rather than
another, then perhaps this quick-fix idea could be salvaged into an idea which successfully
pins down a unique representative of a given equivalence class in K×/(K×)2. This is the
role that canonical factorization plays.

Let a ∈ K× and let (a) = ℘e11 ...℘
en
n be the factorization of (a) into prime ideals where

ei ∈ Z for 1 ≤ i ≤ n. Raising this equation to the power of h(K), we obtain

9Note that K×/(K×)2 is the set of equivalence classes in K× where α, β ∈ K× are equivalent when
there is some γ ∈ K× such that α = βγ2

10When we say the representative is unique, we mean it is unique up to multiplication by units



A BOUND ON THE RANK OF ELLIPTIC CURVES 19

(a)h(K) = (℘e11 ...℘
en
n )h(K)

=⇒ (ah(K)) = ℘1
e1h(K)...℘n

enh(K)

=⇒ (ah(K)) = (℘1
h(K))e1 ...(℘nh(K))en

Note that ℘ih(K) must be principal for each i since h(K) is the order of the ideal class group
and any element of a group raised to the order of that group is the identity. Let ℘imi = (pi)
where mi is the order of ℘i in the class group. Then note that pi is an irreducible element
of OK because if pi = ab then ℘imi = (a)(b) so (a) and (b) are both powers of ℘i, but ℘imi

is the smallest power of ℘i that is principal. Therefore, one of a or b must be ℘imi and
the other must be a unit. Thus, pi is irreducible. Suppose h(K) = miki. (Recall mi|h(K)
since mi is the order of pi in Cl(K).) Then,

(ah(K)) = (℘1
h(K))e1 ...(℘nh(K))en

=⇒ (ah(K)) = (p1)k1e1 ...(pn)knen

=⇒ (ah(K)) = (pk1e11 )...(pknen
n )

=⇒ ah(K) = upk1e11 ...pknen
n for some u ∈ OK×

Since pi is irreducible for each i, this is a factorization of ah(K) into irreducibles. Also
notice that the choices of pi are unique up to multiplication by units in OK .

Definition 4.3. We define the factorization above, ah(K) = upk1e11 ...pknen
n to be the canon-

ical factorization of ah(K) in K× into irreducibles.
Note that ah(K) ≡ a in K×/(K×)2 because h(K) is odd. Similarly, for a ∈ K× a

representative of ā ∈ K×/(K×)2, we define the canonical factorization of a in K×/(K×)2

into irreducibles to be a ≡ upk1e11 ...pknen
n where u ∈ OK× and where kiei ∈ Z/2Z.

It is very important that the canonical factorization of ah(K) stems directly from the
factorization of (a) as an ideal because factorization of ideals is unique so the canonical
factorization of a given element in K×/(K×)2 is completely determined by that element,
thus giving us a deterministic way to choose one particular factorization of ah(K) up to
multiplication by units.

Next, we wish to define a generalization of the notion of the square-free part of an
element. Since we will ultimately be working in K×/(K×)2, it makes sense to define the
square-free part of an element a ∈ OK to be an element b ∈ OK such that ā = b̄ in
K×/(K×)2 which is invariant under our choice of representative of ā in K×/(K×)2. More
explicitly, if ā1 = ā2 in K×/(K×)2, then the square-free part of a1 should be equal to the
square-free part of a2, and we want that ā1 = ā2 = b̄ where b is the square-free part of a1

(and thus also of a2).
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Definition 4.4. Let K× be a number field such that h(K) is odd and let a ∈ OK . Let
ah(K) = upk1e11 ...pknen

n be the canonical factorization of ah(K) in K×. We will denote the
square-free part of a as s(a). Then we define the square free part of a in K× to be

s(a) = u
∏

odd ei

pi.

where the pi are the irreducibles appearing in the canonical factorization of ah(K).

Remark 4.5. Notice that s(a) ≡ a in K×/(K×)2. This is because ah(K) is a square times
s(a) by the definition of s(a) and ah(K) ≡ a in K×/(K×)2 since h(K) is odd.

Proposition 4.6. If a1, a2 ∈ OK and a1 ≡ a2 in K×/(K×)2, then s(a1) = u2s(a2) for
some u ∈ O×K and conversely.

Proof. Suppose a1, a2 ∈ OK and a1 ≡ a2 in K×/(K×)2. Let (a1) = ℘1
E1 ...℘l

El and let
(a2) = ℘1

E1 ...℘l
El℘l+1

El+1 ...℘n
En where ℘i are prime ideals for 1 ≤ i ≤ n, where Ei ∈ Z

for 1 ≤ i ≤ n, and where Ei is even for l + 1 ≤ i ≤ n.
Letting h(K) = kimi where mi is the order of ℘i in the class group, and letting (pi) =

℘mi
i , we have that

(a1)h(K) = (p1)k1E1 ...(pl)klEl and

(a2)h(K) = (p1)k1E1 ...(pl)klEl(pl+1)kl+1El+1 ...(pn)knEn .

Therefore,

a
h(K)
1 = u1p1

k1E1 ...pl
klEl and

a
h(K)
2 = u2p1

k1E1 ...pl
klElpl+1

kl+1El+1 ...pn
knEn

for units u1, u2 ∈ O×K . Then by definition, we have

s(a1) = u1

∏
odd Ei for 1≤i≤l

pi and

s(a2) = u2

∏
odd Ei for 1≤i≤n

pi.

(Recall that h(K) is odd, so ki is odd and thus kiEi is odd exactly when Ei is odd).
Since Ei is even for l+ 1 ≤ i ≤ n, all we have left to show is that u1u

−1
2 is a square. Then

s(a1) = u1u
−1
2 s(a2) by the previous equations, so we will be done with this direction. By

remark 4.5, s(a1) ≡ a1 in K×/(K×)2 and s(a2) ≡ a2 in K×/(K×)2, so since a1 ≡ a2,
s(a1) ≡ s(a2) in K×/(K×)2, which proves that u1u

−1
2 is a square.

Next suppose s(a1) = u2s(a2) for some u ∈ OK . Then s(a1) ≡ s(a2) in K×/(K×)2, so
since s(a1) ≡ a1 and s(a2) ≡ a2, we have a1 ≡ a2.

�
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This proposition tells us that choosing the square-free part of an element via our defini-
tion uniquely determines an equivalence class in K×/(K×)2 and all elements of an equiv-
alence class in K×/(K×)2 share the same square-free part up to multiplication by square
units.

Note that the definition we decided on is slightly different than what we might expect
as given an element a ∈ OK , the square-free part of a does not necessarily divide a; we
know that s(a)|ah(K), but this does not imply that s(a)|a. This will be evident in the next
example. Although we can’t say that the square-free part of a divides a, as mentioned in
remark 4.5, they are congruent in K×/(K×)2, which is all we really need.

Example 4.7. Coming back to our previous example of α = 360 + 45
√

79 ∈ OK where
K = Q[

√
79], what is the canonical factorization of αh(K) and what is the square-free part

of α determined by this factorization?
First, we take the factorization of (α) into prime ideals.

(360 + 45
√

79) = (3, 1 +
√

79)2 × (3,−1 +
√

79)3 × (5, 2 +
√

79)× (5,−2 +
√

79)2

Next, we raise to the power of h(K), which is 3 in this example.

(360 + 45
√

79)3 = (3, 1 +
√

79)6 × (3,−1 +
√

79)9 × (5, 2 +
√

79)3 × (5,−2 +
√

79)6

Note that since the class number is prime, all non-principal ideals must have order exactly
equal to h(K). Next we find the pi by raising each prime ideal to its order.

(3, 1 +
√

79)3 = (−17− 2
√

79)

(3,−1 +
√

79)3 = (17− 2
√

79)

(5, 2 +
√

79)3 = (21− 2
√

79)

(5,−2 +
√

79)3 = (21 + 2
√

79)
So the canonical factorization of αh(K) is

αh(K) = u(−17− 2
√

79)2 × (17− 2
√

79)3 × (21− 2
√

79)× (21 + 2
√

79)2

for some unit u ∈ O×K . If we compute (−17−2
√

79)2×(17−2
√

79)3×(21−2
√

79)×(21+
2
√

79)2, we find that this is 3736125− 729000
√

79, and αh(K)

3736125−729000
√

79
= (−80− 9

√
79)

so the proper unit is u = (−80− 9
√

79).
From this, we get that the square-free part of α is s(α) = (−80 − 9

√
79) × (−2

√
79 +

17)× (−2
√

79 + 21) = 196 + 23
√

79, which is neither of the guesses we had in our previous
example before introducing canonical factorization. Note that α, 196 + 23

√
79, 5

√
79 + 40,

and 3
√

79− 24 are in the same congruence class in K×/(K×)2 because

360 + 45
√

79 = (196 + 23
√

79)×

(
−2 +

√
79

5

)2

196 + 23
√

79 = (5
√

79 + 40)×

(
1 + 2

√
79

5

)2
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5
√

79 + 40 = (3
√

79− 24)×

(
8 +
√

79
3

)2

.

This is what we wanted the definition to accomplish and so in fact, due to Proposition
4.6, s(α) = 196 + 23

√
79 is the square-free part of all of these elements.

Also notice that α = s(α)× 83−4
√

79
25 , so since 83−4

√
79

25 /∈ OK , s(a) - a.

Next, we wish to apply this concept to proving a generalization of Theorem 3.10. The
first place in the previous section where the assumption that h(K) = 1 was used was in
Proposition 3.5. So first, we will need a new version of this proposition which does not rely
on this assumption. In order to state this new version of Proposition 3.5, we will use the
following Lemma.

Lemma 4.8. Let h(K) be odd. Given α ∈ K×, there exists a ∈ OK such that α ≡ a in
K×/(K×)2 and such ord℘(a) is odd whenever ℘ is a prime ideal dividing (a).

Proof. Given α ∈ K×, let α = b1
b2

where b1, b2 ∈ OK . Then αb22 = b1b2 ∈ OK and b1b2 ≡ α
in K×/(K×)2. For simplicity of notation, let b = b1b2.

Let a be the square-free part of b. Then a ≡ b so a ≡ α in K×/(K×)2. Also note that
each (pi) is a prime ideal to the power of its order in Cl(K), and since h(K) is odd, each
(pi) is a prime ideal to an odd power, so we are done. �

Proposition 4.9. Let E be the elliptic curve defined over Q by y2 = f(x) where K
is the splitting field of f(x) and let e1, e2, e3 ∈ K be the roots of f(x) as before. Let
P = (x0, y0) ∈ E(Q) and let

x0 − e1 ≡ a
x0 − e2 ≡ b
x0 − e3 ≡ c

in K×/(K×)2 where a, b, c ∈ OK such that whenever ℘ divides (a), (b), or (c), ord℘(a),
(respectively ord℘(b) and ord℘(c)) is odd. Then ℘|(abc) =⇒ ℘|(∆) where ℘ is a prime
ideal in OK
Remark 4.10. Such a, b, c exist by Lemma 4.8.

Remark 4.11. Throughout the paper, I use the notation (∆) to mean ∆OK .

Remark 4.12. Note that when I write (γ), for γ ∈ K×, I do not mean the ideal in K×

generated by γ. Ideals in fields are of course trivial. This is a fractional ideal, meaning if
γ = n

m for n,m ∈ OK , then (γ) = (n)(m)−1.

Proof. Suppose ℘ is a prime ideal in OK such that ℘|(abc).
If ℘ divides (a), (b), and (c), then letting a = (x0 − e1)A2 where A ∈ K×, ord℘(a) =

ord℘((x0−e1)A2), so ord℘(a) = ord℘(x0−e1)+2ord℘(A), which means that ord℘(x0−e1) is
odd. Similarly ord℘(x0−e2) and ord℘(x0−e3) odd, thus ord℘((x0−e1)(x0−e2)(x0−e3)) =
ord℘(x0−e1)+ord℘(x0−e2)+ord℘(x0−e3) is odd. But the product, (x0−e1)(x0−e2)(x0−
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e3) = y2
0 so ord℘((x0− e1)(x0− e2)(x0− e3)) is even, which is a contradiction. So it cannot

be the case that all three of (a), (b), and (c) are divisible by ℘.
Next, suppose ℘ divides exactly one of (a), (b), and (c). Without loss of generality,

suppose ℘|(a). Then by the same argument as above, ord℘(x0−e1) is odd and since ℘ - (b)
and ℘ - (c), ord℘(x0 − e2) ≡ ord℘(x0 − e3) ≡ 0 mod 2. But then ord℘((x0 − e1)(x0 −
e2)(x0 − e3)) = ord℘(x0 − e1) + ord℘(x0 − e2) + ord℘(x0 − e3) is odd. But the product,
(x0− e1)(x0− e2)(x0− e3) = y2

0 so ord℘((x0− e1)(x0− e2)(x0− e3)) is even, and we arrive
at the same contradiction.

So ℘ divides exactly two of (a), (b), and (c). Without loss of generality, suppose ℘|(a),
℘|(b) and ℘ - (c). Then ord℘(x0 − e1) and ord℘(x0 − e2) are odd by the same argument as
above. The rest of the proof is divided into three cases.

First, we consider the case when ord℘(x0 − e1) 6= ord℘(x0 − e2). Then ord℘(e1 − e2) =
min{ord℘(x0 − e1), ord℘(x0 − e2)} since e1 − e2 is the difference of x0 − e1 and x0 − e2.
Then ord℘(e1 − e2) is odd, so in particular, ord℘(e1 − e2) 6= 0. Thus ℘|(e1 − e2) so ℘|(∆)
since ∆ = (e1 − e2)(e1 − e3)(e2 − e3). (Recall that ei is a root of a monic polynomial with
integral coefficients by definition, so ei ∈ OK so (ei − ej) ∈ OK so it makes sense to say
that ℘|(e1 − e2).)

Next, we suppose ord℘(x0 − e1) = ord℘(x0 − e2) < 0. Then ord℘(x0 − e1) 6= ord℘(e1)
because ord℘(e1) ≥ 0 and ord℘(x0 − e1) < 0. Therefore ord℘(x0) = min{ord℘(x0 −
e1), ord℘(e1)} and min{ord℘(x0− e1), ord℘(e1)} = ord℘(x0− e1). So ord℘(x0) = ord℘(x0−
e1). So ord℘(x0) < 0. If ord℘(x0 − e3) < 0, the same argument will show that ord℘(x0) =
ord℘(x0 − e3) and that ord℘(x0) = ord℘(x0 − e2) so we would have ord℘(x0 − e1) =
ord℘(x0 − e2) = ord℘(x0 − e3) so ord℘(y2

0) = 3ord℘(x0 − e1) but we showed ord℘(x0 − e1)
is odd so this is a contradiction. If ord℘(x0 − e3) ≥ 0, we also know ord℘(e3) ≥ 0 since
e3 ∈ OK so ord℘(x0) ≥ min{ord℘(x0 − e3), ord℘(e3)}, but then ord℘(x0) ≥ 0 which is a
contradiction. Therefore, the case when ord℘(x0 − e1) = ord℘(x0 − e2) < 0 is impossible.

Finally, we consider the case when ord℘(x0 − e1) = ord℘(x0 − e2) > 0. (Note that we
do not need to consider the case when ord℘(x0 − e1) = ord℘(x0 − e2) = 0 because we
showed ord℘(x0−e1) and ord℘(x0−e2) are odd.) We know ord℘(e1−e2) ≥ min{ord℘(x0−
e1), ord℘(x0 − e2)}. Since both ord℘(x0 − e1) and ord℘(x0 − e2) are greater than zero,
ord℘(e1 − e2) > 0, so ℘|(e1 − e2), and thus ℘|(∆), completing our proof. �

The point of this proposition is to aid us in creating an injective map from the im-
age of δ to a finite set, the size of which will be easy to count. Let πi be the projec-
tion of image(δ) onto the ith coordinate of (K×/(K×)2)3 for i = 1, 2, 3. We will de-
fine a map µi from πi(image(δ)) to Γ′/(Γ′2) where Γ′ = {α ∈ K× : ord℘(α) 6= 0 =⇒
℘|(∆) for prime ideals ℘}. Note that Γ = Γ′/(Γ′2) when h(K) = 1, so this is consistent
with Corollary 3.9. We will refer to µi as µ and πi as π with the understanding that µ is
µi for an arbitrary coordinate of (K×/(K×)2)3. We define µ as follows.

Given ᾱ ∈ π(image(δ)) ⊆ K×/(K×)2, choose a representative α ∈ K× and let (α) =
℘1

f1℘2
f2 ...℘n

fn be the factorization of (α) into prime ideals ℘i where fi ∈ Z, fi 6= 0 for
1 ≤ i ≤ n. Let mi = ord(℘i) in Cl(K).
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Define Ei =
{
fi if fi > 0,
lcm(2|fi|,mi) + ei if fi < 0.

Consider the product ℘1
E1℘2

E2 ...℘n
En . Note that this product forms a principal ideal

because ℘1
E1℘2

E2 ...℘n
En = (α)I where I is the product of ℘ilcm(2|fi|,mi) such that fi is

negative. Since mi = ord(℘i) in Cl(K), and since mi divides the exponent of ℘i for each
℘i dividing I, we have that I is principal, and so ℘1

E1℘2
E2 ...℘n

En is principal. So let
℘1

E1℘2
E2 ...℘n

En = (a). Note that a ∈ OK since Ei > 0 for all i. Note that since these
ideals are principal, a ≡ u1α in K×/(K×)2 for some unit u1 ∈ O×K .

Next, let miki = h(K), and let (pi) = ℘i
mi . Notice that s(a) ∈ OK such that s(a) ≡

x0 − ei in K×/(K×)2 and ord℘(s(a)) 6= 0 implies that ord℘(s(a)) is odd. Therefore,
s(a) plays the role of a, b, and c in the hypotheses of Proposition 4.9, so the result of this
proposition tells us that ℘|(∆) whenever ℘|(s(a)) (or equivalently, whenever ord℘(s(a)) 6= 0
since s(a) ∈ OK). Notice that this tells us s(a) ∈ Γ′. Finally, we define µ(ᾱ) = ¯s(a) where

¯s(a) is the equivalence class of s(a) in Γ′/(Γ′2). Next, we show µ is well-defined and
injective, providing an analogue of Corollary 3.9 for odd class number.

Proposition 4.13. The map µ : π(image(δ))→ Γ′/(Γ′2) is well defined and injective.

Proof. Let α1, α2 ∈ π(image(δ)) such that α1 ≡ α2 in K×/(K×)2. Then let α2 = α1γ
2

where γ ∈ K×. Let (α1) = ℘1
f1 ...℘l

fl and let (γ) = ℘l+1
fl+1 ...℘n

fn be the factorizations
of (α1) and (γ) into prime ideals. Then (α2) = ℘1

f1 ...℘l
fl℘l+1

2fl+1 ...℘n
2fn . Following the

definition of µ, let (a1) = ℘1
E1 ...℘l

El and let (a2) = ℘1
E1 ...℘l

El℘l+1
El+1 ...℘n

En where for
1 ≤ i ≤ l,

Ei =
{
fi if fi > 0,
lcm(2|fi|,mi) + fi if fi < 0

and for l + 1 ≤ i ≤ n,

Ei =
{

2fi if fi > 0,
lcm(4|fi|,mi) + 2fi if fi < 0.

Notice that Ei is even for l + 1 ≤ i ≤ n and that a1, a2 ∈ OK . Also notice that a1 ≡ α1

and a2 ≡ α2 in K×/(K×)2. So since α1 ≡ α2, we have a1 ≡ a2 in K×/(K×)2. Then
applying Proposition 4.6, s(a) = u2s(b) for some unit u ∈ OK . Since units are in Γ′, this
shows s(a) ≡ s(b) in Γ′/(Γ′)2 showing µ is well-defined.

Suppose µ((ᾱ1)) = µ((ᾱ2)). This means that s(a1) ≡ s(a2) in Γ′/(Γ′2), so s(a1) =
s(a2)δ2 for some δ ∈ Γ′. Since Γ′ ⊆ K×, s(a1) ≡ s(a2) in K×/(K×)2. Since α1 ≡ s(a1)
and α2 ≡ s(a2), we get that α1 ≡ α2 in K×/(K×)2, so ᾱ1 = ᾱ2, proving that µ is
injective. �

Next, we wish to count the size of Γ′/(Γ′2). Note that Γ′ = {α ∈ K× : (α) =
℘1

t1℘2
t2 ...℘n

tn} where {℘i}1≤i≤n is the set of primes dividing (∆) and ti ∈ Z for 1 ≤ i ≤ n.
Then each congruence class in Γ′/(Γ′)2 is uniquely determined by the values of ti taken
modulo 2 because if (α) = ℘1

t1℘2
t2 ...℘n

tn and (β) = ℘1
t′1℘2

t′2 ...℘n
t′n , then α ≡ β in Γ′/(Γ′)2
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exactly when α = β × γ2 for some γ ∈ Γ′, which happens exactly when ti ≡ t′i mod 2 for
each i. There is one more subtlety to make note of, which is that even if we take the
set of equivalence classes {℘1

t̄1℘2
t̄2 ...℘n

t̄n : t̄i ∈ Z/2Z}, it is not immediately obvious that
each class will correspond to a class in Γ′/(Γ′)2 because it is not immediately obvious
that for each choice of {t̄i}, there exists a principal ideal (α) = ℘1

t1℘2
t2 ...℘n

tn for inte-
gers ti in the class t̄i ∈ Z/2Z. However, this is in fact true because the class number is
odd, so for each ℘i, we can raise to the power of h(K) to get a principal ideal. Thus
Γ′/(Γ′)2 = {℘1

t̄1℘2
t̄2 ...℘n

t̄n : t̄i ∈ Z/2Z}.
Thus, there are 2ν(∆) choices of t̄1, ..., t̄n which will yield an element of Γ′/(Γ′2) where

ν(∆) is now interpreted to be the number of prime ideals11 dividing (∆). So there are 2ν(∆)

choices for the class ℘1
t̄1℘2

t̄2 ...℘n
t̄n . Then we choose a representative from each class, a

principal ideal (α) = ℘1
t1 ...℘n

tn . Then there are 2r1+r2 choices of a generator of this ideal
up to squares where r1 is the number of real embeddings of K into C and r2 is the number
of pairs of non-real embeddings of K into C. This is by Dirichlet’s Unit Theorem12; given
one generator of the ideal, any unit multiple is also a generator of the same ideal and there
are r1 + r2 generators of the unit group which only matter up to squares. This yields a
total of 2ν(∆)+r1+r2 elements of Γ′/(Γ′2). We are now fully equipped to generalize Theorem
3.10 to the odd class number case.

Theorem 4.14. Let E be an elliptic curve defined over Q by the Weirestrass equation
y2 = f(x) = x3 + Ax + B where A,B ∈ Z and let K be the splitting field of f(x) and let
e1, e2, e3 ∈ K be the roots of f(x) as before. Assume that h(K) is odd. Then letting ν(∆)
be the number of prime ideals in OK dividing (∆), and letting r1 and r2 be as before,

RE(K) ≤ 2(r1 + r2 + ν(∆)− 1).

Notice that we did not have to make the bound any looser by making this generalization,
a luxury we will not have in the next section.

Proof. |E(K)/2E(K)| = 2(2+RE(K)) as was shown before Theorem 3.10.
We just showed that |Γ′/(Γ′2)| = 2(r1+r2+ν(∆)).
Notice that E(K)/2E(K) ↪→ (Γ′/(Γ′2))2 by composing µ and δ, so |E(K)/2E(K)| ≤

|(Γ′/(Γ′2))2|, which means

22+RE(K) ≤ 22(r1+r2+ν(∆))

=⇒ 2 +RE(K) ≤ 2(r1 + r2 + ν(∆))

=⇒ RE(K) ≤ 2(r1 + r2 + ν(∆)− 1).

11Note that this is consistent with our previous usage of this notation in section 2 because when h(K) = 1,
the number of prime ideals dividing (∆) is exactly the number of prime elements of OK dividing ∆.

12Dirichlet’s Unit Theorem states that there are r1 + r2−1 generators of the free part of the unit group.
In the cases we are concerned with, the finite part of the unit group (i.e. the roots of unity) is always cyclic,
yielding a total of r1 + r2 generators of the unit group
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�

Corollary 4.15. RE(Q) ≤ 2(r1 + r2 + ν(∆)− 1).

Proof. Note that if P ∈ E(Q) is of infinite order in E(Q), then it is also of infinite order in
E(K) because Q ⊂ K so each power of P is in E(K), and none of them are the identity.

�

5. Arbitrary Class Number

While in the case of odd class number, canonical factorization worked very well to help
us generalize the notion of the square-free part of an element, the same approach will
not work if we allow the class number to be even. While we could still define canonical
factorization of elements raised to the power of the class number, it is no longer true that
for α ∈ K×, we have α ≡ αh(K) in K×/(K×)2, which was needed so that for a ∈ OK ,
s(a) ≡ a in K×/(K×)2 as was pointed out in Remark 4.5. Thus defining this no longer
helps us choose a representative of a given class in K×/(K×)2. Furthermore, we can find
no odd number n such that (α)n is guaranteed to be principal for all elements α ∈ OK .
Simply take any ideal of exact order two in the class group; then raising to any odd power
brings us back to the original ideal class we began with, and thus we will never have a
principal ideal as the odd power of an ideal of order two. So we can never find n such that
α ≡ αn in K×/(K×)2 and (α)n is always principal.

This means we need a new approach. The same underlying approach to proving our
bound will still be used, that is, we want to show that image(δ) embeds into something
finite. Then if we can count the size of the range, we can get a bound on the size of
our domain which will yield a bound on the rank as in the previous two cases. In the
second case, we used our expanded notion of the square-free part of an element to show
that image(δ) could be embedded into (Γ′/(Γ′)2)2 and this was easy to count the size of,
yielding the proof of our bound.

Recall that Γ′ = {α ∈ K× : ord℘(α) 6= 0 =⇒ ℘|(∆)}, or equivalently, Γ′ = {α ∈
K× : ℘ - (∆) =⇒ ord℘(α) = 0}. Another way we could describe this set is to say that
Γ′ = ker(Φ) where

(7) Φ : K× →
⊕
℘-(∆)

Z

is defined so that π(Φ(α)) =ord℘(α) where π is the projection of the direct sum onto the ℘
coordinate and where the direct sum is taken over the set of prime ideals ℘ ∈ OK such that
℘ - (∆). More explicitly, given α ∈ K×, suppose (α) = ℘1

t1℘2
t2 ...℘n

tn where ti ∈ Z for
1 ≤ i ≤ n. Then the coordinate in Φ(α) in

⊕
℘-(∆) Z corresponding to the ideal ℘i (where

℘i - (∆)) is ti. In general, we will denote an element of
⊕

℘-(∆) Z by (a℘)℘-(∆). With this
notation, Φ(α) = (ord℘(α))℘-(∆).
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Notice that in our definition of the map Φ, had we taken the direct sum over all prime
ideals instead of only the prime ideals ℘ such that ℘ - (∆), ker(Φ) = Γ′ would be the unit
group, O×K . Essentially Γ′ is the what the unit group would be if we introduced inverses
of the prime ideals dividing (∆).

What we have shown in the previous cases is that the projection onto one coordinate of
the image of δ can be embedded into ker(Φ)/(ker(Φ))2 = Γ′/(Γ′)2.

Here, we will consider the map

(8) ϕ : K×/(K×)2 →
⊕
℘-(∆)

Z/2Z

We will denote ker(ϕ) by N . For α ∈ Γ′, let ᾱ = {β ∈ Γ′ : β = αγ2 for some γ ∈
Γ′} be the equivalence class of α in Γ′/(Γ′)2. For α ∈ K×, let α = {β ∈ K× : β =
αγ2 for some γ ∈ K×} be the equivalence class of α in K×/(K×)2.

What is the relationship between N and Γ′/(Γ′)2? They are not the same. N is a
subset of K×/(K×)2 such that α ∈ N means that for ℘ - (∆), ord℘(α) ≡ 0 mod 2 for a
representative α ∈ K× of ᾱ. However, α ∈ Γ′/(Γ′)2 means that ord℘(α) = 0 for ℘ - (∆), a
stronger condition.

One might think for a second that these two conditions are not terribly different. After
all, given α ∈ K× a representative of ᾱ ∈ N , then ord℘(α) ≡ 0 mod 2 for ℘ - (∆) implies
that we could multiply by A2 for some ideal A to obtain an ideal I = (α)A2 such that
ord℘I = 0. The problem with this is that A may not be principal, and thus I may not
be principal, so multiplication by A2 may not yield another representative of ᾱ. However,
this leads us to an important observation that when OK is a principal ideal domain, N
and Γ′/(Γ′)2 are in fact not very different. We will see in the next proposition that when
h(K) is odd, there is a bijection between N and Γ′/(Γ′)2. In fact, they are isomorphic. We
will also see that regardless of class number, Γ′/(Γ′)2 can be embedded into N .

Although N cannot actually be equal to Γ′/(Γ′)2 as described above, essentially what is
going on is that the size of the equivalence classes in Γ′/(Γ′)2 are slightly smaller; namely,
they don’t include those elements of K× which are not in Γ′ but are in the same class as an
element of Γ′. When h(K) is odd, each class in Γ′/(Γ′)2 corresponds exactly to a unique
class in N ⊂ K×/(K×)2 and the only difference is that the equivalence class in Γ′/(Γ′)2 is
possibly missing some elements of K× which are not in Γ′.

Proposition 5.1. There is an injective homomorphism from Γ′/(Γ′)2 to N . Furthermore,
when h(K) is odd, this map is onto, yielding an isomorphism between N and Γ′/(Γ′)2.

Proof. Define the map µ : Γ′/(Γ′)2 → N so that µ(ᾱ) = α where for α ∈ K×, ᾱ =
{β ∈ Γ′ : β = αγ2 for some γ ∈ Γ′} is the equivalence class of α in Γ′/(Γ′)2 and where
α = {β ∈ K× : β = αγ2 for some γ ∈ K×} is the equivalence class of α in K×/(K×)2.

First note that although this map is naturally defined from Γ′/(Γ′)2 to K×/(K×)2,
image(µ) ⊂ N . Let α ∈ Γ′. Any representative of α is of the form αγ2 for some γ ∈ K×.
Since α ∈ Γ′, α has the property that ℘ - (∆) implies that ord℘(α) = 0. Thus αγ2 has the
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property that ℘ - (∆) implies that ord℘(αγ2) ≡ 0 mod 2, showing that ϕ(α) = 0. Thus
µ(ᾱ) ∈ ker(ϕ) = N .

Next, we will show that µ is well-defined. Let α, β ∈ Γ′ be representatives of the same
equivalence class in Γ′/(Γ′)2. Then α = βγ2 for some γ ∈ Γ′. Since Γ′ ⊂ K×, this shows
α ∈ µ(β̄). Thus µ(ᾱ) = µ(β̄) showing that µ is well-defined.

Next note that µ is a homomorphism of abelian groups because α1α2 = α1α2 by defini-
tion of multiplication in K×/(K×)2.

Next, we will show that µ is injective by showing that the kernel of µ is trivial. If
ᾱ ∈ ker(µ), then α = 1, so α = 1× γ2 for some γ ∈ K×. Since α ∈ Γ′, γ2 ∈ Γ′, so γ ∈ Γ′.
Thus α ∈ 1̄, so 1̄ = ᾱ and we’re done.

To show that µ is onto will require the assumption that h(K) is odd. Consider B ∈ N
and let α ∈ OK be a representative of B. (Note that given any class in K×/(K×)2, we
can find a representative in OK). Then for any prime ideal ℘ such that ℘ - (∆), we have
ord℘(α) ≡ 0 mod 2.

Let (α) = IA′ where I is the product of prime ideals (to their respective powers) dividing
(α) which also divide the discriminant and A′ is the product of prime ideals (to their respec-
tive powers) which do not divide the discriminant. More explicitly, if (α) = ℘e11 ℘

e2
2 ...℘

en
n is

the prime factorization of (α), then

I =
∏
℘i|(∆)

℘ei
i and

A′ =
∏
℘i-(∆)

℘ei
i .

where 1 ≤ i ≤ n. Note that A′ is a square because ord℘(α) ≡ 0 mod 2 whenever ℘ - (∆),
so let A′ = A2.

Then (α) = IA2. So (α)h(K) = Ih(K)(Ah(K))2 and raising any ideal to the power of
the class number yields a principal ideal, so let Ih(K) = (β) and let Ah(K) = (γ). Then
(α)h(K) = (β)(γ)2, so αh(K) ≡ uβγ2 ≡ uβ in K×/(K×)2 for some u ∈ O×K . Since h(K) is
odd, αh(K) ≡ α in K×/(K×)2, so α ≡ uβ in K×/(K×)2.

Recall that (uβ) = (β) = Ih(K) and I was constructed so that ℘|I implies that ℘|(∆).
Thus, ℘|(β) implies that ℘|(∆). Therefore, uβ ∈ Γ′. And since α ≡ uβ in K×/(K×)2,
α ∈ uβ = µ(uβ) so B = µ(uβ) showing that µ is onto when h(K) is odd.

�

This proposition will be proved another way in Lemma 5.4, but the point of presenting
this now is to suggest that a natural generalization of Γ′/(Γ′)2 would be to instead consider
N . They are isomorphic when h(K) is odd and Γ′/(Γ′)2 embeds into N in general. This
is the approach we will take, that is, we wish to show that the projection of the image of
δ onto a given coordinate can be embedded into N . We then wish to bound the size of N .
First we focus on showing that the projection of the image of δ onto a given coordinate
can be embedded into N .
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Recall that in the previous section, we showed π(image(δ)) embeds into Γ′/(Γ′)2 in
Proposition 4.9. However, we used that h(K) was odd in Lemma 4.8 which was used
in the statement of this proposition to ensure the existence of a, b, and c. However, an
investigation of the proof of this proposition will reveal that it also showed that ord℘(x0−
ei) ≡ 0 mod 2 implies that ℘|(∆) whenever x0 − ei ∈ π(image(δ)), which shows that
π(image(δ)) embeds into N . In fact, a, b, c were only actually needed to show that β ∈ Γ′,
thus showing µ(π(image(δ))) ∈ Γ′/(Γ′)2. For clarity, we state a version of Proposition 4.9
which does not rely on the existence of a, b, and c and we revisit the same proof without
using a, b, and c.

Proposition 5.2. Let E be the elliptic curve defined over Q by y2 = f(x) where K
is the splitting field of f(x) and let e1, e2, e3 ∈ K be the roots of f(x) as before. Let
P = (x0, y0) ∈ E(Q). Then ord℘(x0 − ei) is odd =⇒ ℘|(∆) where ℘ is a prime ideal in
OK

Proof. Suppose ℘ is a prime ideal in OK such that ord℘(x0 − e1) is odd. (The same
argument will hold choosing ord℘(x0 − e2) or ord℘(x0 − e3) to be odd).

If ord℘(x0 − e2) and ord℘(x0 − e3) are also both odd, then ord℘((x0 − e1)(x0 − e2)(x0 −
e3)) = ord℘(x0−e1)+ord℘(x0−e2)+ord℘(x0−e3) is odd. But the product, (x0−e1)(x0−
e2)(x0 − e3) = y2

0 so ord℘((x0 − e1)(x0 − e2)(x0 − e3)) is even, which is a contradiction. So
it cannot be the case that all three of ord℘(x0 − e1), ord℘(x0 − e2), and ord℘(x0 − e3) are
all odd.

Next, suppose only ord℘(x0 − e1) is odd, and ord℘(x0 − e2) and ord℘(x0 − e3) are even.
But then ord℘((x0−e1)(x0−e2)(x0−e3)) = ord℘(x0−e1)+ord℘(x0−e2)+ord℘(x0−e3) is
odd. But the product, (x0− e1)(x0− e2)(x0− e3) = y2

0 so ord℘((x0− e1)(x0− e2)(x0− e3))
is even, and we arrive at the same contradiction.

So exactly two of ord℘(x0−e1), ord℘(x0−e2), and ord℘(x0−e3) are odd. Let ord℘(x0−e1)
and ord℘(x0 − e2) be odd and ord℘(x0 − e3) be even. The rest of the proof is divided into
three cases.

First, we consider the case when ord℘(x0 − e1) 6= ord℘(x0 − e2). Then ord℘(e1 − e2) =
min{ord℘(x0 − e1), ord℘(x0 − e2)} since e1 − e2 is the difference of x0 − e1 and x0 − e2.
Then ord℘(e1 − e2) is odd, so in particular, ord℘(e1 − e2) 6= 0. Thus ℘|(e1 − e2) so ℘|(∆).
(Note that ei is an algebraic integer since it is the root of a monic polynomial with integral
coefficients. Thus (ei − ej) ∈ OK so it makes sense to say that ℘|(e1 − e2)).

Next, we suppose ord℘(x0 − e1) = ord℘(x0 − e2) < 0. Then ord℘(x0 − e1) 6= ord℘(e1)
because ord℘(e1) ≥ 0 and ord℘(x0 − e1) < 0. Therefore ord℘(x0) = min{ord℘(x0 −
e1), ord℘(e1)} and min{ord℘(x0− e1), ord℘(e1)} = ord℘(x0− e1). So ord℘(x0) = ord℘(x0−
e1). So ord℘(x0) < 0. If ord℘(x0 − e3) < 0, the same argument will show that ord℘(x0) =
ord℘(x0 − e3) and that ord℘(x0) = ord℘(x0 − e2) so we would have ord℘(x0 − e1) =
ord℘(x0 − e2) = ord℘(x0 − e3) so ord℘(y2

0) = 3ord℘(x0 − e1) but we showed ord℘(x0 − e1)
is odd so this is a contradiction. If ord℘(x0 − e3) ≥ 0, we also know ord℘(e3) ≥ 0 since
e3 ∈ OK so ord℘(x0) ≥ min{ord℘(x0 − e3), ord℘(e3)}, but then ord℘(x0) ≥ 0 which is a
contradiction. Therefore, the case when ord℘(x0 − e1) = ord℘(x0 − e2) < 0 is impossible.
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Finally, we consider the case when ord℘(x0 − e1) = ord℘(x0 − e2) > 0. (Note that we
do not need to consider the case when ord℘(x0 − e1) = ord℘(x0 − e2) = 0 because we
showed ord℘(x0−e1) and ord℘(x0−e2) are odd.) We know ord℘(e1−e2) ≥ min{ord℘(x0−
e1), ord℘(x0 − e2)}. Since both ord℘(x0 − e1) and ord℘(x0 − e2) are greater than zero,
ord℘(e1 − e2) > 0, so ℘|(e1 − e2), and thus ℘|(∆), completing our proof. �

Since N = {ᾱ ∈ K×/(K×)2 : ord℘(α) odd =⇒ ℘|(∆)}, this version of the proposition
immediately yields the following corollary.

Corollary 5.3. π(image(δ)) ↪→ N . Furthermore, applying Proposition 3.4, this implies
image(δ) ↪→ N2.

We have succeeded in showing that image(δ) ↪→ N2, which was the first of our two goals.
Next we need to figure out a way to bound the size of N . Note that it is no longer easy to
count the size of N as it was for Γ′/(Γ′)2.

We will do so by showing that there are maps µ and ν such that the following is an
exact sequence where (C∆)2 is the 2-torsion13 of C∆ and where ϕ is as defined in (8).

(9) 0→ Γ′/(Γ′)2 µ→ N
ν→ (C∆)2

If we can show this, then (Γ′/(Γ′)2)/ ker(µ) ∼= image(µ) and by the exactness, ker(µ) is
trivial so Γ′/(Γ′)2 ∼= image(µ). Also, N/ ker(ν) ∼= image(ν) and by the exactness of the
sequence, image(µ) = ker(ν) so then N/(Γ′/(Γ′)2) ∼= image(ν) and image(ν) ⊂ (C∆)2 so
this yields the following bound on the size of N .

|N | ≤ |Γ′/(Γ′)2||(C∆)2|.
We already know how to count the size of Γ′/(Γ′)2 and we will see that (C∆)2 is not

difficult to count either. First we will show that (9) is an exact sequence.
Let C∆ = coker(Φ). Recall that Γ′ = ker(Φ). Thus the following is an exact sequence.

(10) 0→ Γ′ ↪→ K×
Φ→
⊕
℘-(∆)

Z→ C∆ → 0

where Φ is as defined in (7). The injection from Γ′ to K× is just inclusion and the map
from

⊕
℘-(∆) Z to C∆ takes elements to their class modulo image(Φ). Both of these maps

are homomorphisms and Φ is also a homomorphism.
Notice that just like Γ′ resembles O×K , C∆ resembles the class group, Cl(K). In fact

the class group is sometimes defined as fitting into the exact sequence above without the
condition that ℘ - (∆). Notice that

⊕
℘-(∆) Z is a way to represent ideals modulo those

prime ideals dividing the discriminant and image(Φ) is essentially ideals that are principal
(or would be principal if multiplied by an ideal A such that all prime ideals dividing A also
divide the discriminant), so it makes sense that C∆ = coker(Φ) = (

⊕
℘-(∆) Z)/ image(Φ)

should remind us of the class group because we are taking the set of ideals (modulo prime

13If A is an abelian group, then for n ∈ N, the n-torsion of A is (A)n = {a ∈ A such that na = 0} where
the operation in A is denoted additively.
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ideals dividing (∆)) and moding out by “principal” ideals (or ideals that are equivalent to
a principal ideal modulo prime ideals dividing (∆)).

Recall that we defined N = ker(ϕ) and (C∆)2 is the 2-torsion of C∆. Then similarly, we
obtain the following exact sequence where ϕ is as defined in (8).

(11) 0→ N ↪→ K×/(K×)2 ϕ→
⊕
℘-(∆)

Z/2Z

where again the map from N to K×/(K×)2 is inclusion.
Now using (11) and (10), we can prove the following lemma which will allow us to bound

the size of N as discussed earlier.

Lemma 5.4. There exist maps µ and ν such that the following is an exact sequence.

0→ Γ′/(Γ′)2 µ→ N
ν→ (C∆)2

Proof. This proof is an expanded version of one found in [Mil06] on page 117. Let A ∈ N
have representative α ∈ K×. Then since N = ker(Φ), ord℘(α) ≡ 0 mod 2 for all ℘ - (∆).
Then define a map ν : N → C(∆)) such that

ν : A→

[(
ord℘(α)

2

)
℘-(∆)

]

Note that
(

ord℘(α)
2

)
℘-(∆)

∈
⊕

℘-(∆) Z and for A ∈
⊕

℘-(∆) Z, I use the notation [A] to

mean the class of A modulo the image of Φ. (Recall that C∆ is (
⊕

℘-(∆) Z)/ image Φ).
Since as it is written, this may appear to depend on a representative of N , we first show

that ν is well-defined. Suppose α, β ∈ K× are representatives of the same class A ∈ N .
Then α = βγ2 for some γ ∈ K×. Then

ord℘(α) = ord℘(β) + 2ord℘(γ) for all ℘

=⇒ ord℘(α)
2

=
ord℘(β)

2
+ ord℘(γ) in particular, for all ℘ - (∆)

=⇒
(

ord℘(α)
2

)
℘-(∆)

=
(

ord℘(β)
2

)
℘-(∆)

+ (ord℘(γ))℘-(∆) .

Note that (ord℘(γ))℘-(∆) = Φ(γ), so [(ord℘(γ))℘-(∆)] = 0 in C∆. Thus[(
ord℘(α)

2

)
℘-(∆)

]
=

[(
ord℘(β)

2

)
℘-(∆)

]
which shows that ν is well-defined.
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Next we will show that image(ν) ⊂ (C∆)2. (Notice that (C∆)2 is a subgroup of C∆).
Let A ∈ N have representative α ∈ K×. Then

ν(A) =

[(
ord℘(α)

2

)
℘-(∆)

]
=⇒ 2ν(A) =

[
(ord℘(α))℘-(∆)

]
= [Φ(α)] = 0 in C∆.

Thus image(ν) ⊂ (C∆)2. Next we show that ker(ν) ∼= Γ′/(Γ′)2. (Notice that Γ′/(Γ′)2 is
not actually a subset of K×/(K×)2 so it doesn’t make sense to say that ker(ν) = Γ′/(Γ′)2).
To do so, define a map f : ker(ν)→ Γ′/(Γ′)2 as follows.

Let A ∈ ker(ν) ⊂ N . Then ν(A) = 0 in C∆ implies that(
ord℘(α)

2

)
℘-(∆)

∈ image(Φ).

Then there exists β ∈ K× such that

Φ(β) = (ord℘(β))℘-(∆) =
(

ord℘(α)
2

)
℘-(∆)

=⇒ ord℘(α) = 2ord℘(β) for all ℘ - (∆)

=⇒ (α) = (β)2(γ) for some γ ∈ Γ′

Notice that β is unique up to multiplication by elements of Γ′, so γ is unique up to
multiplication by elements of (Γ′)2. So it makes sense to define f(A) = γ̄ where γ̄ is the
class of γ in Γ′/(Γ′)2. It is left to the reader to verify that f is an isomorphism. �

Corollary 5.5. |N | ≤ |Γ′/(Γ′)2||(C∆)2|

Proof. See the map defined in (9). The discussion following this map proves this corollary.
�

Next we need to bound |(C∆)2|. Notice that C∆ ⊂ C where C ∼= Cl(K) is considered
with additive notation to be consistent with C∆. Thus (C∆)2 ⊂ (C)2, so |(C∆)2| ≤
|(C)2| = |(Cl(K))2|. Note that (Cl(K))2

∼= Cl(K)/(Cl(K))2. So we wish to find the size
of Cl(K)/(Cl(K))2 since |(C∆)2| ≤ |Cl(K)/(Cl(K))2|. First we consider some examples.

Example 5.6. Let Cl(K) ∼= Z/5Z. Then Cl(K)/2(Cl(K)) ∼= {1} because if Cl(K) is
generated by g where the order of g is 5, and we set squares of all elements to be 1, then
g6 = g so g ≡ 1. So |Cl(K)/(Cl(K))2| = 1.

Example 5.7. If Cl(K) ∼= Z/4Z, then Cl(K)/2(Cl(K)) ∼= {Z/2Z} because if Cl(K) is
generated by g of order 4 and we set squares of elements to be zero, then g2m+1 ≡ g and
g2m ≡ 1 for m ∈ N. Also g 6= 1, so |Cl(K)/(Cl(K))2| = 2.

Lemma 5.8. Let Cl(K) ∼= C1× ...×Cn and the Ci are finite cyclic groups and let e(K) =
|{Ci : |Ci| is even }|. Then |Cl(K)/(Cl(K))2| = 2e(K).
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Proof. Let n ∈ N. Let Cl(K) ∼= C1× ...×Cn where Ci ∼= Z/kiZ generated by {g1, g2, ...gn}
where the order of gi is ki. For odd ki, let ki = 2ni + 1. Then g2ni+2

i = gi. Setting the
squares of all elements to be 1, (gni+1

i )2 ≡ 1 so gi ≡ 1. For even ki, g2m+1
i ≡ gi and g2m

i ≡ 1
for all m ∈ N. Therefore, we are left with Cl(K)/(Cl(K))2 = {ḡi : ki is even} where the
order of ḡi is 2 for each i. In other words, Cl(K)/(Cl(K))2 ∼= (Z/2Z)e(K), which proves
our claim. �

Theorem 5.9. Let E be an elliptic curve defined over Q by the Weirestrass equation
y2 = f(x) = x3 + Ax + B where A,B ∈ Z and let K be the splitting field of f(x) and let
e1, e2, e3 ∈ K be the roots of f(x) as before. Then letting ν(∆) be the number of prime
ideals in OK dividing (∆), and let r1 and r2 be the number of embeddings of K into C
which are real and not real respectively. Then,

RE(K) ≤ 2(r1 + r2 + ν(∆) + ord2(h(K))− 1).

Proof. Recall that |Γ′/(Γ′)2| ≤ 2r1+r2+ν(∆) as in the proof of Theorem 4.14.
By Lemma 5.8, |(C∆)2| ≤ 2e(K) where e(K) = |{Ci : |Ci| is even }| where Cl(K) ∼=

C1 × ...× Cn and the Ci are finite cyclic groups.
Note that e(K) can be no greater than ord2(h(K)) with equatlity when each Ci such

that |Ci| is even has order exactly 2.
By Corollary 5.5,

|N | ≤ |Γ′/(Γ′)2||(C∆)2|

=⇒ |N | ≤ 2(r1+r2+ν(∆)+e(K))

=⇒ |Image(δ)| ≤ 22(r1+r2+ν(∆)+e(K)) by Corollary 5.3

Just as before, |E(K)/2E(K)| = 2(2+RE(K)), so by Theorem 3.1,

22+RE(K) ≤ 22(r1+r2+ν(∆)+e(K))

=⇒ 2 +RE(K) ≤ 2(r1 + r2 + ν(∆) + e(K))

=⇒ RE(K) ≤ 2(r1 + r2 + ν(∆) + e(K)− 1)

=⇒ RE(K) ≤ 2(r1 + r2 + ν(∆) + ord2(h(K))− 1)

proving Theorem 5.9. �

Corollary 5.10. The proof in fact shows a slightly tighter bound. Letting e(K) = |{Ci :
|Ci| is even }| where Cl(K) ∼= C1 × ...× Cn and the Ci are finite cyclic groups, we get

RE(K) ≤ 2(r1 + r2 + ν(∆) + e(K)− 1).



34 CHRISTINE MCMEEKIN

Corollary 5.11. Since RE(Q) ≤ RE(K) as discussed in the previous section, we obtain the
following.

RE(Q) ≤ 2(r1 + r2 + ν(∆) + e(K)− 1),

RE(Q) ≤ 2(r1 + r2 + ν(∆) + ord2(h(K))− 1).

6. Examples, Conclusions, and Further Inquiries

We have successfully proven an upper bound on the rank of an arbitrary elliptic curve.
However, there are many more questions left unaddressed. Can we find examples of curves
for which this bound is tight or could the bound be made tighter in general? If not in
general, could it be made tighter under specific conditions? Does the class group even
contribute to the rank as would be the case if this bound was tight?

One should note that this bound is by no means ground-breaking and in its generality,
it does lose quite a bit of tightness. Many tighter bounds are known. In the examples to
come you will notice that it does not seem to be the case that this bound is very tight.
This is very much the nature of the topic of elliptic curves; different curves often behave
radically differently from one another, which makes it very difficult to have a bound that
is both general and relatively tight.

Example 6.1. The best example I’ve been able to find of this bound being close to the
actual rank is the curve y2 = x3 + 8x. The actual rank of this curve is 1. Using SAGE,
one can determine that r1 + r2 − 1 = 0, ν(∆) = 1, and ord2(h(K)) = 0, so the bound is
2(0 + 1 + 0) = 2.

Unfortunately, for most curves, the bound was not nearly this tight.

Example 6.2. The following is a program I wrote in SAGE which considers all non-
singular curves of the form y2 = x3 +Ax+B, where i ≤ A ≤ j and n ≤ B ≤ m, and prints
“(A,B), [RE(K), 2(r1 + r2 + ν(∆)− 1)], ord2(h(K))” where A and B are the coefficients of
the curve.

Although computing B(−10, 10,−10, 10) only tests 431 curves14, this does give us some
sort of statistics indicating the strength of this bound.
sage: def B(i,j,n,m):
....: a=i
....: b=n
....: while i<=a & a<=j:
....: while n<=b & b<=m:
....: R.<x>=QQ[]
....: f=x^3 + a*x + b
....: if f.discriminant()!=0:
....: r=EllipticCurve([a,b]).rank()
....: if f.is_irreducible():
....: K.<k>=NumberField(f)

14There are 212 = 441 combinations of A and B, but only 431 of them are non-singular.
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....: G.<g>=K.galois_closure()

....: if len(f.factor())==2:

....: if b==0:

....: A=0

....: B=a

....: if b!=0:

....: D=divisors(b)

....: for d in D:

....: if d^3 + a*d + b == 0:

....: A=d

....: if -d^3 - a*d + b ==0:

....: A=-d

....: B=a+A^2

....: G.<g>=NumberField(x^2 + A*x + B)

....: if len(f.factor())==3:

....: G=QQ

....: M=G.class_number().ord(2)

....: if G.degree()>1:

....: R=G.unit_group().rank()

....: L=prime_factors(f.discriminant())

....: S=0

....: p=0

....: while 0<=p & p<=len(L)-1:

....: S=S+len(G.primes_above(L[p]))

....: p=p+1

....: if G.degree()==1:

....: R=0

....: S=len(prime_factors(f.discriminant()))

....: print (a,b),[r, 2*(R+S+M)],M

....: b=b+1

....: if b>m:

....: b=n

....: a=a+1

It would consume too much space to include the actual results of this program for all
431 curves, but Figure 2 is a graph which indicates the number of curves for which the
difference between the bound and the rank is a given value. The horizontal axis represents
the difference between the bound and the rank and the vertical axis represents the number
of curves for which the difference between the bound and the rank is the given value. More
explicitly, letting x denote the difference 2(r1 + r2 + ν(∆) + ord2(h(K))− 1)−RE(Q), then
f(x) is the number of curves tested which yield this difference.

The average difference between the bound and the rank over all was about 13.7968,
where the smallest gap was 1 and the largest was 30. However, I cannot stress enough that
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Figure 2. f(x) is the number of curves y2 = x3+Ax+B for −10 ≤ A,B ≤
10 such that 2(r1 + r2 + ν(∆) + ord2(h(K))− 1)−RE(Q) = x.

we are working with a rather small sample size and we only consider curves with small
coefficients.

Investigating the graphs in Figures 2, 3, 4, and 5, we do see something vaguely like
normal distributions, but it still appears to also be fairly random, possibly a consequence
of our small sample size.

Figure 3 is the same idea as Figure 2 but considering only the curves for which ord2(h(K))
is 0. Here, the average difference between the bound and the rank is 10.8512, which was
lower than the average difference for all curves.

Figure 4 is the same, considering only the curves for which ord2(h(K)) = 1. Here, the
average difference between the bound and the rank is 17.2255, already higher than the
overall average difference.

Figure 5 is the same, considering only the curves for which ord2(h(K)) > 1. Here, the
average difference between the bound and the rank is 19.9783.

These three charts indicate that for small ord2(h(K)), as ord2(h(K)) gets larger, the
bound seems to get looser. So as ord2(h(K)) increases, perhaps the rank of curves on
average is staying about the same.

While example 6.1 is somewhat tight, it would be more satisfying to see a curve for which
the bound is relatively tight where all of the components of the bound are non-zero. For
example, what if ord2(h(K)) does not even contribute to the bound? What I mean by this
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Figure 3. same as Figure 2 but only considering curves such that
ord2(h(K)) = 0.

Figure 4. same as Figure 2 but only considering curves such that
ord2(h(K)) = 1.

is, can we find a curve such that the rank of this curve is greater than 2(r1 +r2 +ν(∆)−1)?
Note that this is what the bound would be if we set ord2(h(K)) = 0. I ran a program on
SAGE which tested a number of curves by iterating over the coefficients to see if I could
find any example in which the class group actually necessarily contributed to the bound.
Had this given me an example, we would know for sure that this is an important part of
the bound if we wish to keep the bound general. However, the program returned no such
examples, which leaves the question of whether the class group contributes to the bound
inconclusive. This program was of course limited in many ways. It is difficult to test a
very large number of curves without running into problems computing the rank of all of
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Figure 5. same as Figure 2 but only considering curves such that
ord2(h(K)) > 1.

them. It would be better to narrow down certain classes of curves in which we expect we
may find such examples and then run the program only on those curves.

Example 6.3. The following program was written in SAGE to consider all curves y2 =
x3 + Ax + B, where i ≤ A ≤ j and n ≤ B ≤ m, and when the curve is nonsingular, it
computes 2(r1 + r2 + ν(∆)− 1) which is the hypothetical bound in which the class number
plays no role, and it computes the actual rank. If it finds a curve in which RE(Q) >
2(r1 + r2 + ν(∆)− 1), it prints “(A,B), [RE(Q), 2(r1 + r2 + ν(∆)− 1)], ord2h(K)” where A
and B are the coefficients of the curve in which RE(Q) > 2(r1 +r2 +ord2(h(K))+ν(∆)−1)
sage: def B(i,j,n,m):
....: a=i
....: b=n
....: while i<=a & a<=j:
....: while n<=b & b<=m:
....: R.<x>=QQ[]
....: f=x^3 + a*x + b
....: if f.discriminant()!=0:
....: r=EllipticCurve([a,b]).rank()
....: if f.is_irreducible():
....: K.<k>=NumberField(f)
....: G.<g>=K.galois_closure()
....: if len(f.factor())==2:
....: if b==0:
....: A=0
....: B=a
....: if b!=0:
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....: D=divisors(b)

....: for d in D:

....: if d^3 + a*d + b == 0:

....: A=d

....: if -d^3 - a*d + b ==0:

....: A=-d

....: B=a+A^2

....: G.<g>=NumberField(x^2 + A*x + B)

....: if len(f.factor())==3:

....: G=QQ

....: M=G.class_number().ord(2)

....: if G.degree()>1:

....: R=G.unit_group().rank()

....: L=prime_factors(f.discriminant())

....: S=0

....: p=0

....: while 0<=p & p<=len(L)-1:

....: S=S+len(G.primes_above(L[p]))

....: p=p+1

....: if G.degree()==1:

....: R=0

....: S=len(prime_factors(f.discriminant()))

....: if r>2*(R+S):

....: print (a,b),[r, 2*(R+S+M)],M

....: b=b+1

....: if b>m:

....: b=n

....: a=a+1

....:

I ran B(−10, 10,−10, 10), which returned nothing. Thus for all curves tested, RE(Q) ≤
2(r1 + r2 + ν(∆) − 1). However, this is not a very strong suggestion that the class group
does not contribute to the rank. This has only checked 212 = 441 potential15 curves and
since the bound is not very tight anyway, it seems unlikely that we would have found such
an example, especially by such a brute force approach. It may be necessary for the bound
to be sharper in the case when ord2(h(K)) = 0 to expect to find such examples.

However, if one continues to consider the average difference between the bound and the
rank as ord2(h(K)) increases, perhaps we could find that this difference grows rapidly or
perhaps we would find that it levels off. If it grows rapidly, that seems to suggest the
possibility that the class group does not contribute that much to the bound, but if it levels
off, perhaps we could gain some insight into a better way to find an example in which
RE(Q) > 2(r1 + r2 + ν(∆)− 1).

15It checks less than 441 curves, since some of them are singular
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Note that all of the above examples used the bound RE(Q) ≤ 2(r1 + r2 + ν(∆) +
ord2(h(K))− 1). This is the weaker of our two bounds in Corollary 5.11. We should point
out that it does make a difference to use the bound presented in Corollary 5.10 which
considers not only the class number, but the structure of the class group. We illustrate
with the following example, which is a curve taken from [JAP].

Example 6.4. Consider the elliptic curve y2 = x3 − 1033477836241777x. ν(∆) = 7, and
r1+r2−1 = 1 and h(K) = 256, so ord2(h(K)) = 8. Thus 2(r1+r2+ν(∆)+ord2(h(K))−1) =
32. This is not very tight because the actual rank is 10. However, the class group in this
example is Z/4Z × Z/4Z × Z/4Z × sinceZ/4Z so the structure of the class group reveals
that while ord2(h(K)) = 8, in fact e(K) = 4, so we can tighten the bound a little, by using
2(r1 + r2 + ν(∆) + e(K)− 1) = 24.

There is of course much more that could be done from here. One could work on sharpen-
ing the bound in various ways or in various cases. One could continue to study the statistics
of the weakness of this bound in relation to the growth of ord2(h(K)), or in relation to
other factors. One could also do the same sort of statistical analysis using the stronger
bound presented in Corollary 5.10.
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I would like to thank my thesis advisor, Álvaro Lozano-Robledo for his patience and
dedication in working with me on this project and also Keith Conrad for his help and the
University of Connecticut Honors Program for their support.

References

[Duj] Andrej Dujella, History of elliptic curves rank records, http://web.math.hr/ duje/tors/rankhist.html.
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