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1. Introduction

Let K be a number field and let E/K be an elliptic curve. The Mordell-Weil Theo-

rem states that E(K), the set of K-rational points on E, can be given the structure

of a finitely generated abelian group. In this note we consider elliptic curves defined

over the rationals Q and provide bounds for the size of E(K)Tors, where K is an

algebraic Galois extension of Q.

Theorem 1. Let E/Q be an elliptic curve, let SE,add be the set of primes of additive

reduction of E/Q, and let N ≥ 2 be fixed. Let K be an algebraic Galois extension of

Q (not necessarily finite) unramified at primes in SE,add such that the ramification

index of any other prime p in K/Q is finite and bounded by N . Then E(K)Tors is

finite and there is a computable bound B = B(E,N) for its size. Moreover, if E is

semi-stable, then the bound B is independent of E.

The bound will follow from a more general result, Theorem 16, and will be
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made explicit in Theorem 17. The proofs of Theorems 16 and 17 are elementary in

that they require little more than the theory of Tate curves and standard results

from a first course on elliptic curves. However, they rely on deep results of Mazur

(Theorems 4 and 14 below) and Serre (Propositions 11 and 12 of [12]).

Applying Theorem 1 when K is an unramified extension of a finite extension F

of Q, we are able to obtain the following.

Theorem 2. Let E/Q be a semi-stable elliptic curve. Let F/Q be a finite Galois

extension of degree d > 7. Let K be the maximal unramified extension of F . Suppose

that P is a point of exact order `n for some prime number ` defined over K, then

` ≤ d+ 1 and `n <
(
3
2

)4
(d+ 1)2d4 if ` is odd, or 2n ≤ 29d4 if ` = 2.

Notice, in particular, that these bounds are polynomial in the degree d of the

extension F/Q. Compare this to the celebrated results on the Uniform Boundedness

Conjecture, proved by Merel in 1996 and improved by Parent in 1999, where the

assumptions are much more general, but the bounds are exponential in d.

Theorem 3 (Merel, [8], Theorem, and Parent, [9], Theorem 1.3). Let K

be a number field of degree [K : Q] = d > 1. Then:

(1) (Merel, 1996) Let E/K be an elliptic curve. If E(K) contains a point of exact

prime order `, then ` ≤ d3d2 .a

(2) (Parent, 1999) If P is a point of exact prime power order `n, then

(a) `n ≤ 65(3d − 1)(2d)6, if ` ≥ 5

(b) `n ≤ 65(5d − 1)(2d)6, if ` = 3

(c) `n ≤ 129(3d − 1)(3d)6, if ` = 2.

Merel and Parent proved these results by extending methods of Kamienny and

Mazur using the theory of Jacobian varieties and Hecke Algebras (see [1] for a survey

of the work of Kamienny and Mazur).

The improvement in Theorem 2 is not too surprising given that it applies only

to semi-stable elliptic curves defined over Q, as opposed to a general elliptic curve

as in Theorem 3. Still, this difference is important because it quantifies how difficult

it is for a semi-stable elliptic curve defined over Q to acquire torsion in an arbitrary

degree d number field.

One would like to write down the complete (finite) collection of possible isomor-

phism types of E(K)Tors, for E an arbitrary elliptic curve defined over a degree

d number field K. Moreover, one would like to know the sub-collection of groups

for semi-stable curves defined over Q. However, the general case is only known for

d = 1 and 2, i.e., for K = Q and for quadratic fields (as stated in [11], Theorem

6.9).

aIn [8], Merel claims that Oesterlé can lower this to ` ≤ (1 + 3d/2)2.
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Theorem 4 (Mazur, [6], Theorem 8). Let E/Q be an elliptic curve. Then

E(Q)Tors '

{
Z/MZ with 1 ≤M ≤ 10 or M = 12, or

Z/2Z⊕ Z/2MZ with 1 ≤M ≤ 4.

Theorem 5 (Kenku and Momose, [4], Kamienny, [3]). Let K/Q be a

quadratic field and let E/K be an elliptic curve. Then

E(K)Tors '


Z/MZ with 1 ≤M ≤ 16 or M = 18, or

Z/2Z⊕ Z/2MZ with 1 ≤M ≤ 6, or

Z/3MZ⊕ Z/3MZ with M = 1 or 2, only if K = Q(
√
−3), or

Z/4Z⊕ Z/4Z only if K = Q(
√
−1).

In our restricted case, we present results (see Proposition 21) which are analo-

gous to, but less specific than, Theorems 4 and 5; we provide bounds for the possible

group structures for E(K) when K satisfies the assumptions of Theorem 1 but do

not determine the precise list of possible torsion subgroups over these large fields.

It is important to notice, however, that our bounds only depend on the ramification

indices of the field, and not on the degree of the extension.

The layout of the paper is as follows: Section 2 gives a brief discussion of linear

algebra over the ring Z/`nZ for a prime number `; Section 3 covers some preliminary

results; the proofs of Theorems 1 and 2 are presented in Section 4; and Section 5

discusses an application of the main theorem to fields with very small ramification.

2. Linear algebra over Z/`nZ

Let E be an elliptic curve defined over any field F . For all prime numbers ` not

equal to the characteristic of F , the kernel of the multiplication-by-`m map (defined

over F̄ ), E[`m], is isomorphic to Z/`mZ⊕ Z/`mZ as an abelian group.

If ρ` : Gal(F̄ /F ) → Aut(T`) is the `-adic representation associated to E, then

reducing modulo `m gives a representation

ρ̄`m : Gal(F̄ /F )→ Aut(T`/`
mT`) ' Aut(E[`m]) ' Aut(Z/`mZ⊕ Z/`mZ),

and after choosing a basis 〈Pm, Qm〉 for E[`m], we obtain a map

ρ̄`m : Gal(F̄ /F )→ GL2(Z/`mZ).

Moreover, if n < m, then we can reduce again modulo `n to get a map

ρ̄`n : Gal(F̄ /F )→ GL2(Z/`nZ),

where our basis for E[`n] is given by 〈Pn, Qn〉, with Pn = [`m−n]Pm and Qn =

[`m−n]Qm.

Now let Rm = amPm + bmQm ∈ E[`m] be any point of exact order `m. Let ν`
be the standard `-adic valuation of Q, i.e. ν`(`) = 1. By abuse of notation, we will

also use ν` on elements of Z/`mZ so that if am and bm are elements of Z/`mZ, then
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their `-adic valuations satisfy 0 ≤ ν`(am), ν`(bm) ≤ m. In particular, since Rm is of

exact order `m, we must have that one of ν`(am) or ν`(bm) is zero (i.e. one of am
or bm is a unit modulo `m). Note also that the `-adic valuation being equal to m is

equivalent to that coefficient being zero.

Now suppose that we take some multiple Rn = [`m−n]Rm (with n < m) of Rm.

Then Rn is a point of exact order `n and we have that Rn = anPn + bnQn with

Pn and Qn as above, am ≡ an mod `n, and bm ≡ bn mod `n. The next lemma is

elementary and we omit the proof.

Lemma 6. If an 6= 0, then ν`(am) = ν`(an), and if bn 6= 0 then ν`(bm) = ν`(bn).

3. Remarks on ramification indices

Let E/Q be an elliptic curve and fix, once and for all, a global minimal model for E.

Let ` ≥ 2 be a prime number and let Rn ∈ E[`n] be a point of exact order `n. Let

Mn be the Galois closure of Q(Rn) over Q. In this section we collect information

about the ramification in the extensions Mn/Q and Q(E[`n])/Q for any prime `

and natural number n. These extensions can only be ramified at the prime ` and

primes of bad reduction for E by the criterion of Néron-Ogg-Shafarevich.

Our main method will be to study the ramification in certain local Galois exten-

sions Ln/Qp where p is a prime of bad (multiplicative) reduction for E, or p = `. To

do so, we choose an embedding of Q̄ into Q̄p for each p and fix it for the remainder

of this paper.

Additionally, we adopt the convention that when we choose a basis {Pn, Qn} for

E[`n], we are actually choosing a basis for all E[`∞]. That is, we are choosing bases

{Pn, Qn} for all n simultaneously such that Pn = [`]Pn+1 and Qn = [`]Qn+1 for all

n ≥ 0.

3.1. Good reduction

Suppose that E has good reduction at `. For this section, set Ln to be the com-

positum MnQp. Let Z̄` be the ring of integers of Q̄` and let M` be the maximal

ideal of Z̄`. We will denote by ν the valuation on Q̄` which extends the usual `-adic

valuation ν` of Q, i.e. we require ν(`) = 1. Finally, let I` be the inertia subgroup of

Gal(Q̄`/Q`).
Since E has good reduction at `, we have an exact sequence of Gal(Q̄`/Q`)-

modules:

0→ E1(Q̄`)[`n]→ E(Q̄`)[`n]→ Ẽ(F̄`)[`n]→ 0, (3.1)

where Ẽ is a non-singular elliptic curve, E → Ẽ is given by reduction modulo M`,

and E1 is its kernel. Notice that E1(Q̄`) is a Gal(Q̄`/Q`)-submodule of E. If E

has ordinary reduction, then E1(Q̄`)[`n] has order `n and it has order `2n if the

reduction is supersingular. We will divide our study into three parts:

(1) Understand the ramification in Ln/Qp when the reduction of Rn is trivial;
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(2) Understand the ramification in Ln/Qp when the reduction of Rn generates

Ẽ(F̄`)[`n]; and

(3) Understand the ramification in Ln/Qp when the reduction of Rn is neither

trivial nor generates Ẽ(F̄`)[`n].

We begin with a result of Serre which explains the case n = 1.

Proposition 7. [Serre, [12], Section 1.11] Suppose first that E has ordinary reduc-

tion at `. Then Gal(Q`(E[`])/Q`) is isomorphic to a Borel subgroup of GL2(Z/`Z).

Moreover, the image of I` under ρ̄` has order `− 1 or `(`− 1) and is of the form{(
? 0

0 1

)}
or

{(
? ?

0 1

)}
,

with respect to any basis {P1, Q1} with P1 ∈ E1(Q̄`).
If, instead, E has supersingular reduction at `, then the images of I` and

Gal(Q̄`/Q`) under ρ̄` are a non-split Cartan subgroup (cyclic of order `2 − 1) and

its normalizer (of order 2(`2 − 1)), respectively.

We remind the reader that the normalizer of a non-split Cartan subgroup is a

group of the form

N =

{(
a bε

b a

)
,

(
a bε

−b −a

)
: a, b ∈ Z/`Z, (a, b) 6= (0, 0)

}
,

where ε is an arbitrary quadratic non-residue in Z/`Z.

Lemma 8. Let R1 be a point of exact order ` in E1(Q̄`), the kernel of the reduction

map. Then the extension Q`(R1)/Q` is always non-trivial and ramified, and its

ramification index is either `−1 if the reduction is ordinary or `2−1 if the reduction

is supersingular.

Proof. Choose any other point Q1 ∈ E[`] such that 〈R1, Q1〉 = E[`]. If E has

ordinary reduction at `, then the lemma is immediate from Proposition 7: as R1 is

in the kernel of the reduction map, the fields Q`(R1) and Q`(ζl) are equal, and the

ramification index in the extension Q`(R1)/Q` is therefore `− 1.

If E has supersingular reduction at `, then we need to consult the field diagram

K = Q`(E[`])

2

`2−1
KH

`2−1
KI

2

Q`
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where H =

{(
1 0

0 ±1

)}
is the subgroup of Gal(K/Q`) (the normalizer of a non-

split Cartan subgroup) which fixes R1 (here we are using the fact that we took

R1 to be the first element in the basis for E[`]). Because I is a non-split Cartan

subgroup, 〈I,H〉 = Gal(K/Q`), so that KH ∩ KI = Q`. Thus, KH = Ql(R1) is

totally ramified extension of Q` of degree `2 − 1.

We now move on to values of n > 1. For such n and any 0 < i < n, set

Ri = [`n−i]Rn. Note that Ri is a point of exact order `i.

Lemma 9. Let n > 1 and suppose that Rn ∈ E1(Q̄`), that is, suppose that Rn
reduces to the origin modulo M`. Then the ramification index in the extension

Q`(Rn)/Q` is at least ϕ(`n) = `n−1(` − 1) if the reduction is ordinary and (`2 −
1)`n−1 if the reduction is supersingular.

Proof. Note first that each of the multiples of Rn is in the kernel of the reduction

modulo M` map. Next, the theory of formal groups (see [13], IV, Proposition 2.2)

shows that E1(Q̄`) ∼= Ê(M`), where Ê is the formal group associated to E. The

isomorphism is given by (x, y) 7→ t((x, y)) = −x/y.

Put ti = t(Ri) ∈ Ê. Since ti ∈ M`, we have that ν(ti) > 0. On the other hand,

by Theorem IV.6.1 of [13],

ν(ti) ≤
ν(`)

`i − `i−1
≤ 1

for all 1 ≤ i ≤ n. Further, by Corollary IV.4.4 of [13], there exist power series

f(T ), g(T ) ∈ Z̄`[[T ]] with f(0) = g(0) = 0 such that

[`](T ) = `f(T ) + g(T `).

In particular, ti = [`](ti+1) = `f(ti+1) + g(t`i+1). If ν(ti+1) ≥ ν(ti), then the right

hand side of the previous equation would have strictly larger valuation than ti.

Thus, we must have 0 < ν(ti+1) < ν(ti) ≤ 1, for all 1 ≤ i ≤ n. Hence, the extension

Q`(ti+1)/Q`(ti) is ramified, and therefore the extension Q`(Ri+1)/Q`(Ri) is ramified

at `.

By Lemma 8, the ramification in the extension Q`(R1)/Q` is either ` − 1 or

`2 − 1 according to the type of good reduction, and the extension Q`(E[`])/Q`(R1)

is either unramified or the ramification degree is `. Moreover, the extension

Q`(E[`i+1])/Q`(E[`i]) is Galois, and its degree is a divisor of `4. Since Q`(Rn) ⊆
Q`(E[`n]), we conclude that the ramification of the extension Q`(Rn)/Q`(R1) is a

power of `, and we showed above that Q`(Ri+1)/Q`(Ri) is ramified for all i ≥ 1

(thus, the ramification at every step is at least `). Hence, the ramification of

Q`(Rn)/Q`(R1) must be at least (` − 1)`n−1 = ϕ(`n) or (`2 − 1)`n−1 according

to the reduction type, as claimed.

We now understand the ramification coming from points in the kernel of re-

duction. In particular if E has supersingular reduction at `, then E1(Q̄`)[`n] =
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E(Q̄`)[`n] and the previous Lemma applies for every point of order `n. Next we

consider the case of ordinary reduction, and in particular we study the case where

the reduction of Rn generates Ẽ(F̄`)[`n].

Lemma 10. Let n > 1 (n > 3 if ` = 2) and suppose that the reduction of Rn
modulo M` generates Ẽ(F̄`)[`n]. Then the residual degree of Q`(Rn)/Q` satisfies

fQ`(Rn) ≥ n. In particular, there is a sub-extension F ⊂ Q`(Rn) such that F/Q` is

unramified and of degree at least n.

Proof. Let t < n, q = `t and let Fq be a finite field with q elements. The Hasse

bound implies that

0 < q + 1− 2
√
q ≤ #Ẽ(Fq) ≤ q + 1 + 2

√
q < `n,

due to our assumption that n > 1 (and n > 3 if ` = 2).

Thus, there cannot be any points of exact order `n defined over Fq. Since ex-

tensions of the residue field are in one-to-one correspondence with unramified sub-

extensions of Q`(Rn), we are done.

We now suppose that E has ordinary reduction at ` and consider the case where

Rn is neither in the kernel of reduction, nor reduces to a generator of E(F̄`)[`n].

This is the step where we will need the fact that Ln = MnQ` is a Galois extension

of Q`. We distinguish between the cases ` > 2 and ` = 2.

Lemma 11. Suppose that E/Q has good ordinary reduction at `. Let n > 1 (n > 4

if ` = 2) and suppose that Rn ∈ E(Q̄`)[`n] is a point of exact order `n which is

neither in the kernel of reduction, nor reduces to a generator of Ẽ(F̄`)[`n]. Then:

(1) If ` > 2 then the ramification index of Ln/Q` is at least ϕ(`n);

(2) If ` = 2 then either the ramification index of Ln/Q` is at least ϕ(2n−1) ≥ 2,

or the residual degree of Ln/Q` satisfies fLn ≥ n − 1. In particular, there is a

sub-extension F ⊂ Ln such that F/Q` is unramified and of degree at least n−1.

Proof. Let {Pn, Qn} be a Z/`nZ-basis of E[`n] such that Pn is in the kernel of

reduction and Qn generates all the image of the reduction map, i.e. the reduction of

Qn is a point of exact order `n in Ẽ(F̄`). Recall that E1(Q̄`) is a Gal(Q̄`/Q`)-stable

submodule (see Equation 3.1) so that Gn = Gal(Q`(E[`n])/Q`) is a Borel subgroup

of GL2(Z/`nZ).

Because the action of Galois on Ẽ(F̄`) factors through the map Gal(Q̄`/Q`)→
Gal(F̄`/F`) (composed with the natural action of Gal(F̄`/F`) on Ẽ(F̄`)) and I` is

the kernel of this map, Ẽ(F̄`) is fixed by I`. Thus, Gn∩I` is a subgroup of the form:{(
χ δ

0 1

)}
.

Notice that the upper left corner, the character χ, must be the full `nth cyclotomic

character because Q`(ζ`n) ⊆ Q`(E[`n]) and Q`(ζ`n)/Q` is certainly ramified.
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Let Rn = anPn + bnQn ∈ E(Q̄`). Since Rn is not in the kernel of reduction, we

know that bn 6= 0; since R̃n does not generate Ẽ(F̄`), we know that bn is not a unit.

Thus bn ≡ 0 mod `, and ν`(bn) < n. Since Rn is of exact order n, the coefficient an
must be a unit modulo `n.

(1) Suppose ` > 2. Let σ ∈ I` be a matrix congruent to

(
2 0

0 1

)
mod ` (such an

element exists because ` > 2 and Prop. 7). Then,

σ(Rn) = (anχ(σ) + bnδ(σ))Pn + bnQn

is defined over Ln because Ln/Q` is Galois, and

σ(Rn)−Rn = (an(χ(σ)− 1) + bnδ(σ))Pn ≡ anPn mod `.

Since an is a unit mod `n, the point σ(Rn)−Rn has exact order `n, it is in the

kernel of reduction (it is a multiple of Pn) and defined over Ln (recall that E

is defined over Q, so the addition in E is defined over Q). Hence, by Lemma 9,

the ramification degree of Ln/Q` is at least ϕ(`n).

(2) Suppose ` = 2, n > 4, and bn ≡ 0 mod 2. Let us write bn = 2dn, for some

non-zero dn ∈ Z. Let τ ∈ I` be such that χ(τ) ≡ 3 mod 8 (recall that χ is the

cyclotomic character, thus, for every α ∈ (Z/8Z)× there must be an element τ

of I` such that χ(τ) ≡ α mod 8).

(a) If bnδ(τ) ≡ 0 mod 4, then:

τ(Rn)−Rn = (an(χ(τ)− 1) + bnδ(τ))Pn ≡ 2Pn mod 4

because an ∈ (Z/8Z)×. Thus, τ(Rn) − Rn is a point of exact order 2n−1

in the kernel of reduction and defined over Ln. Therefore, the ramification

index of Ln/Q2 is at least ϕ(2n−1), by Lemma 9.

(b) If bnδ(τ) ≡ 2 mod 4, then bn = 2dn for some odd integer dn. Thus, Rn =

anPn + dn(2Qn) = anPn + dnQn−1, and dn is a unit in Z/2nZ. Therefore,

the reduction of Rn moduloM2 generates Ẽ(F̄2)[2n−1]. As we are assuming

that n > 4, we may apply Lemma 10 to conclude that the residual degree of

Ln/Q` satisfies fLn ≥ n− 1.

The following proposition is an immediate corollary of Lemmas 10 and 11 and

the criterion of Néron-Ogg-Shafarevich.

Proposition 12. Let E/Q be an elliptic curve given by a minimal model with good

reduction at a prime `. Let n > 1 (or n > 4 if ` = 2). Let Rn be a point of exact

order `n, and let Mn/Q be the Galois closure of Q(Rn).

(1) Let ` ≥ 3 and n > 1. Either the ramification index of ` in Mn/Q is at least

ϕ(`n) or there is some prime p of bad reduction which ramifies in Mn/Q.

(2) Let ` = 2 and n > 4. Either the ramification index of ` = 2 in Mn/Q is at least

ϕ(2n−1) or there is some prime p of bad reduction which ramifies in Mn/Q.
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3.2. Bad multiplicative reduction

We now drop the assumption that E has good reduction at `. Instead, we let p be a

prime of multiplicative reduction (p = ` is possible). The theory of Tate curves (see

Chapter V of [14], for instance), gives an extension F/Qp such that E(F̄ ) ∼= F̄×/qZ,

for some q ∈ F such that j(E) = j(q). In fact, if E has split multiplicative reduction

at p, we can take F = Qp; otherwise, F/Qp is a quadratic unramified extension. For

this section, set Ln to be the compositum MnF . Notice that Ln/F is Galois and it

is the minimal field of definition of Rn over F (because E(Q̄) ⊆ E(Q̄p)).
Under this isomorphism, E(F̄ )[`n] ' 〈ζ`n , q1/`

n〉/qZ. Let Pn be the inverse image

of ζ`n and let Qn be the inverse image of q1/`
n

. Then 〈Pn, Qn〉 = E(F̄ )[`n], and we

will write Rn = anPn + bnQn with an, bn ∈ Z/`nZ. Finally, note that F (E[`n]) =

F (ζ`n , q
1/`n) and F (Rn) = F (ζan`n · qbn/`

n

).

Let ν` and νp be the usual prime valuations on Q. Set

αp = ν`(νp(q)) = ν`(−νp(j(E)))

and let γn be the smallest integer such that there is an `n−γn root of q defined over

F , i.e., q′ = q1/`
n−γn ∈ F and q1/`

n

= (q′)1/`
γn

. Note that αp is independent of n

and αp ≥ n− γn, for all n.

Recalling that Ln/F is Galois and the minimal field of definition of Rn over F

and that Rn 7→ ζan`n · qbn/`
n

, we have

Ln =

{
F (ζ`n , q

bn/`
n

) if bn /∈ (Z/`nZ)×; (3.2)

F (ζ`δn , q
1/`n) if bn ∈ (Z/`nZ)×, (3.3)

where δn = max{γn, n − ν`(an)}. Because F/Qp is unramified, the ramification

index ep = e(Ln/Qp) of the extension Ln/Qp equals the ramification index of the

extension Ln/F . Moreover, we know that the ramification index of the extension

F (qbn/`
n

)/Qp is max(`n−v`(bn)−αp , 1). Thus, we may conclude:

(1) If Ln = F (ζ`n , q
bn/`

n

), then

ep =

{
ϕ(`n) ·max(`n−v`(bn)−αp , 1) if p = `; (3.4)

max(`n−v`(bn)−αp , 1) if p 6= `. (3.5)

(2) If Ln = F (ζ`δn , q
1/`n), then

ep =

{
ϕ(`δn) ·max(`n−αp , 1) if p = `; (3.6)

max(`n−αp , 1) if p 6= `;. (3.7)

3.3. The Full Division Field

In this section we review the necessary results about the full division field Q(E[`n]).

Lemma 13. Let E be an elliptic curve defined over Q, let ` be a prime, and let K

be an algebraic Galois extension of Q. Then Q(µ`n) ⊂ Q(E[`n]). Thus the ramifi-

cation index of ` in the extension Q(E[`n])/Q is at least ϕ(`n). In particular, if `
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is finitely ramified in K and ϕ(`n) is larger than the ramification index of ` in K,

then Q(E[`n]) cannot be contained in K.

Proof. The non-degeneracy of the Weil pairing guarantees that any field containing

all of the points of order `n contains the `n-th roots of unity, i.e.

Q(µ`n) ⊆ Q(E[`n]).

If we assume that Q(E[`n]) ⊆ K then, in particular, Q(µ`n) ⊆ K, and the ramifi-

cation index of ` in the extension K/Q is at least ϕ(`n).

We quote a deep theorem of Mazur regarding the image of the `-adic represen-

tation of E:

Theorem 14 (Mazur, [7] Theorems 3 and 4). Let E/Q be an elliptic

curve and ` a prime number. Let L be the set of prime numbers L := {p ≤
19} ∪ {37, 43, 67, 163}. Then either ` ∈ L or the image of the representation

ρ̄` : Gal(Q̄/Q) → GL2(Z/`Z) attached to E is irreducible. Moreover, if E is semi-

stable, then ρ̄` is surjective for ` > 7.

Corollary 15. Let E/Q be an elliptic curve and ` a prime number. Let L be the set

of prime numbers L := {p ≤ 19} ∪ {37, 43, 67, 163}. Let K be an algebraic, Galois

extension of Q, and suppose R1 is a point of exact order ` defined over K. Then

` ∈ L or the ramification at ` in K/Q is at least ϕ(`) = `− 1. If E/Q is semistable

and ` > 7, then the ramification index of K/Q is at least `− 1.

Proof. If the image of ρ̄` is surjective or irreducible then E[`] has no non-trivial

Z/`Z[Gal(Q̄/Q)]-submodules. Therefore, if R1 is a non-trivial point of order ` de-

fined over K, and K/Q is Galois, then E[`] must be defined over K. Thus, by

Lemma 13, µ` ⊂ K and the ramification of K/Q at ` must be at least ϕ(`). Thus,

the result follows directly from Mazur’s theorem.

4. The proofs of Theorems 1 and 2

In this section, K/Q is an algebraic Galois extension. The ramification index of a

rational prime ` in K/Q will be denoted by eK(`) when it is finite. For an elliptic

curve E defined over Q, we set the following notation for the remainder of the

section:

• Let SE,mult and SE,add denote, respectively, the sets of rational primes where

E has multiplicative and additive bad reduction;

• Let S = SE,add ∪ SE,mult ∪ {`} for a fixed prime `;

• Let eK = max
p∈S

(eK(p));

• Let a(`, C) be the least integer such that ϕ(`a) > C if ` is odd (or ϕ(2a−1) > C

if ` = 2), for a given C > 0;

• Let a = a(`, eK);
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• Let b = b(`, E) ≥ 0 be the largest integer such that there exists a point of E of

exact order `b defined over Q;

• Let n = max(a, b+ 1, 2) if ` is odd and n = max(a, b+ 1, 5) if ` = 2; and

• Set m = a+ 2n.

Theorem 16. Let ` ≥ 2 be a prime and let E/Q be an elliptic curve. Suppose that

K is an algebraic Galois extension of Q such that any prime in S is finitely ramified

in K, and any prime in SE,add is unramified in K. Then, there are no points of E

of exact order `m defined over K.

Proof. We may assume that E/Q is given by a minimal model, because the iso-

morphism class of E(K)Tors only depends on the Q-isomorphism class of E. Let Rm
be a point in E of exact order `m. Then Rn = [`m−n]Rm is a point of exact order

`n. Denote by Mm and Mn the Galois closures of Q(Rm) and Q(Rn) respectively.

As n > b, Mn/Q is a non-trivial extension. We will show that if Rm ∈ E(K), then

Mn/Q is a non-trivial extension which is unramified at all rational primes. Since

such extensions do not exist, the theorem will follow.

The proof has two steps. We will prove that the extension Mn/Q is unramified

at primes of bad reduction using (mainly) the results of Section 3.2. Then, we will

be able to deduce the theorem using (mainly) Proposition 12.

To begin, let p be a prime of bad additive reduction. By assumption p does not

ramify in K. Since Mn/Q, Mm/Q, and K/Q are all Galois extensions, and we are

assuming that Rm ∈ E(K), we must have that Mn ⊂ K. Thus, Mn is unramified

at all primes at which E has bad additive reduction.

Next, let p be a prime of bad multiplicative reduction, and define F/Qp, q, αp,
γm, δm, MmF = Lm, and Ln as in Section 3.2. In particular, these choices assume

that we have chosen compatible bases {Pm, Qm} and {Pn, Qn} for E[`m] and E[`n],

respectively. Write Rm = amPm + bmQm and Rn = anPn + bnQn.

Our next step is to analyze the extension Ln/Qp. We divide our study into

three cases, based on the `-adic valuation of bn. In each case we will either reach a

contradiction or show that Ln/Qp is unramified.

Case 1: ν`(bn) = n

In this case, Equation (3.2) shows Ln = F (ζ`n). If p = `, this extension is totally

ramified of degree ϕ(`n) ≥ ϕ(`a) > eK , which is a contradiction. If p 6= `, this

extension is unramified, as desired.

Case 2: 0 < ν`(bn) < n

In this case, Equation (3.2) shows Lm = F (ζ`m , q
bm/`

m

). If p = `, Equation (3.4)

shows that the ramification index is at least ϕ(`m) > ϕ(`a) > eK , again a contra-

diction. If p 6= `, Equation (3.5) shows that the ramification index in Lm/Qp is at
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least

`m−v`(bm)−αp = `m−v`(bn)−αp by Lemma 6,

> `m−n−αp

= `a+n−αp

We will return to this case in a moment.

Case 3: ν`(bn) = 0

In this case, Lemma 6 shows that bm is also a unit. Equation (3.3) then shows that

Lm = F (ζ`δm , q
1/`m). If p = `, then Equation (3.6) shows that the ramification

index in Lm/Qp is at least ϕ(`δm). This forces δm < a. Consequently, m − δm >

m− a = 2n > n. Thus Ln ⊆ Lm−δm .

If Rm corresponds locally to the point ζam`m · qbm/`
m

, then Rm−δm = [`δm ](Rm)

corresponds locally to the point (ζam`m )`
δm ·(qbm/`m)`

δm
. Since δm ≥ m−ν`(am) then

(ζam`m )`
δm

= 1. Similarly, since δm ≥ γm, then (qbm/`
m

)`
δm ∈ F by the definition of

γm. Hence, Lm−δm = F and we have shown that Ln ⊆ Lm−δm = F . Since F/Qp is

unramified, this is the desired result. Now, if p 6= `, then Equation (3.7) shows that

the ramification of Lm/Qp is at least `m−αp > `a+n−αp .

p = ` p 6= `

ν`(bn) = n Contradiction Unramified

0 < ν`(bn) < n Contradiction eLm(p) > `a+n−αp

ν`(bn) = 0 Unramified eLm(p) > `a+n−αp

Table 1. A summary of our findings so far.

It remains to deal with the two cases in the bottom right of Table 1. Suppose

that αp < n. Then a + n − αp > a + n − n = a. In particular, the ramification

index of Lm/Qp would be at least `a ≥ ϕ(`a) > eK , a contradiction. Thus, we

conclude that αp ≥ n. However, Equations (3.5) and (3.7) show that if αp ≥ n,

then Ln/Qp is unramified. Thus, Mn/Q is unramified at all primes p at which E

has bad multiplicative reduction. This completes our first step, namely, we have

shown that Mn/Q is unramified at all primes p at which E has bad reduction.

By the criterion of Néron-Ogg-Shafarevich, the primes p which ramify in Mn/Q
are a subset of those contained in S = SE,add∪SE,mult∪{`}. However, since Mn/Q is

unramified at all primes at which E has bad reduction, we are left to conclude that

either Mn/Q is unramified at all rational primes (a contradiction because Mn/Q is

non-trivial), or E has good reduction at ` and Mn/Q is ramified at `. Let us assume

the latter possibility.

Notice that our choice of n satisfies the hypothesis of Proposition 12. In par-

ticular, since Mn/Q is unramified at all primes of bad reduction, the ramification
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index at ` must satisfy

eMn
(`) ≥ ϕ(`n) (or eMn

(2) ≥ ϕ(2n−1)).

As n ≥ a, this is a contradiction. Thus, we have reached a contradiction in all cases,

and our original assumption that Rm ∈ E(K) is impossible.

Theorem 17 (Explicit Version of Theorem 1). Let E/Q be an elliptic curve,

and let N ≥ 2 be fixed. Let K be an algebraic Galois extension of Q (not necessarily

finite) unramified at primes in SE,add such that the ramification index of any other

prime p in K/Q is finite and bounded by N . Then E(K)Tors is a subgroup of

Z/(2m(2,N)−1)Z× Z/(2a(2,N)−2)Z×
∏

`∈L∪R
`≥3

Z/(`m(`,N)−1)Z× Z/(`a(`,N)−1)Z,

where L is defined in Theorem 14 and R := {primes ` : ` ≤ N + 1}. In particular,

E(K)Tors is finite and #E(K)Tors divides

B(E,N) = 2m(2,N)+a(2,N)−3
∏

`∈L∪R
`≥3

`m(`,N)+a(`,N)−2.

This bound depends on E because the field K depends on the primes of additive

reduction of E. Thus, if E is semi-stable, then E(K)Tors is a subgroup of

Z/(2m(2,N)−1)Z× Z/(2a(2,N)−2)Z×
∏

3≤`≤A

Z/(`m(`,N)−1)Z× Z/(`a(`,N)−1)Z,

where A = max(7, N + 1), and #E(K)Tors divides

B(N) = 2m(2,N)+a(2,N)−3
∏

3≤`≤A

`m(`,N)+a(`,N)−2

depending only upon N , independent of E.

Proof. Note that K satisfies the hypotheses of Theorem 16 simultaneously for all

primes `. Consequently, there are no points of order `m defined over K, for any `.

Moreover, by Lemma 13, Q(E[`a]) cannot be contained in K for any odd prime `.

If ` = 2, then Q(E[2a−1]) cannot be contained in K. Thus, E(K)[`∞] is isomorphic

to a subgroup of Z/`m−1Z×Z/`a−1Z for odd primes ` and of Z/2m−1Z×Z/2a−2Z
for ` = 2.

If ` /∈ L ∪R, then ϕ(`) = `− 1 > N and, by Corollary 15, the ramification at `

in the extension K/Q is at least ϕ(`) > N , which contradicts our hypothesis. If we

assume further that E is semi-stable, then the same argument shows that no prime

` > max(7, N + 1) can divide the order of E(K)Tors.

Finally, note that if E is semi-stable, then SE,add = ∅, so that our field K no

longer depends on E, hence our bound does not depend on E either.

Corollary 18 (Theorem 2). Let E/Q be a semi-stable elliptic curve. Let F/Q be

a finite Galois extension of degree d > 7. Let K be the maximal unramified extension
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of F . Suppose that P is a point of exact order `n for some prime number ` defined

over K, then ` ≤ d+ 1 and `n <
(
3
2

)4
(d+ 1)2d4 if ` is odd, or 2n ≤ 29d4 if ` = 2.

Proof. We apply Theorem 17 with N = d since eK ≤ d. In particular, no prime

larger than max(7, d + 1) = d + 1 can divide #E(K)Tors. If ` is odd, our choice of

a gives `a−2(`− 1) ≤ d. Thus,

`a ≤ `2

`− 1
d. (4.1)

If ` = 2, our choice of a gives 2a−3 ≤ d, so that

2a ≤ 8d. (4.2)

In the notation of Theorem 16, we need to estimate

m(`, d) + a(`, d)− 2 = 2a+ 2 max(a, b+ 1, 2)− 2

if ` is odd, and

m(2, d) + a(2, d)− 3 = 2a+ 2 max(a, b+ 1, 5)− 3

if ` = 2. Since d > 7, we have that a(2, d) ≥ 6, a(3, d) ≥ 3, a(5, d) ≥ 2, and

a(7, d) ≥ 2. In particular, Mazur’s classification theorem (Theorem 4) shows that

max(a, b+ 1, 2 or 5) = a for all primes `. Combining this with Equations (4.1) and

(4.2) yields

n ≤ 2a+ 2 max(a, b+ 1, 2)− 2

= 4a− 2

so that

`n ≤ (`a)
4
`−2

≤
(

`2

`− 1
d

)4

`−2, by Equation (4.1)

=

(
`

`− 1

)4

`2d4

<

(
3

2

)4

(d+ 1)2d4, since 3 ≤ ` ≤ d+ 1

if ` is odd, and

n ≤ 2a+ 2 max(a, b+ 1, 5)− 3

= 4a− 3

so that

2n ≤ (2a)
4

2−3

≤
(
23d
)4

2−3, by Equation (4.2)

= 29d4
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if ` = 2.

Corollary 19. Let E, F , d > 7 and K be as in the previous corollary. Then

|E(K)Tors| < 29(d+ 1)5d+4.

Proof. As above, our choice of a for odd ` gives `a−2 ≤ ϕ(`a−1) ≤ d so that

a ≤ log` d+ 2.

By the previous corollary, we have

#E(K)Tors ≤ 29d4
∏

3≤`≤A

`4a(`,d)−2.

Noting that A = d + 1 and combining the previous equation with the logarithmic

bounds for a(`, d) above gives

#E(K)Tors ≤ 29d4
∏

3≤`≤d+1

`4(log` d+2)−2

= 29d4
∏

3≤`≤d+1

d4`6

≤ 29d4+4· d2
∏

3≤`≤d+1

`6

≤ 29(d+ 1)2d+4
∏

3≤`≤d+1

(d+ 1)6

≤ 29(d+ 1)5d+4,

as desired, where we have used the fact that there are at most d
2 odd numbers `

with 3 ≤ ` ≤ d+ 1.

Remark: In the above corollaries, the assumption that d > 7 is made solely to

simplify the algebra. It is entirely possible to produce similar results for all d > 1

using the same methods.

5. An application of Theorem 17

In this section, as an example, we apply our results to provide bounds on the

torsion of elliptic curves over Q, upon base change by a field with everywhere low

ramification. Our results are, thus, in the same vein as Fujita’s result below which,

in turn, builds on previous work by Laska and Lorenz (see [5]):

Theorem 20 (Fujita, [2], Theorem 2). Let E be an elliptic curve over Q. Let

F := Q({
√
m : m ∈ Z}). Then, the torsion subgroup E(F )Tors is finite, and it is

isomorphic to one of the following 20 groups:

Z/2Z⊕ Z/2MZ for M = 1, 2, 3, 4, 5, 6, 8,

Z/4Z⊕ Z/4MZ for M = 1, 2, 3, 4,

Z/2MZ⊕ Z/2MZ for M = 3, 4
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or {0}, Z/3Z, Z/3Z ⊕ Z/3Z, Z/5Z, Z/7Z, Z/9Z, Z/15Z. Moreover, each group

listed above appears as E(F )Tors for some elliptic curve E defined over Q.

In this context, we can apply Theorem 1 to get the following generalization (at

least in the case that E is semi-stable) of Theorem 20:

Proposition 21. Let E/Q be a semi-stable elliptic curve and let K/Q be an alge-

braic Galois extension (not necessarily finite or abelian) such that eK(`) ≤ 5 for all

primes ` ≥ 2. Then, E(K)Tors is a subgroup of

(Z/214Z× Z/24Z)× (Z/37Z× Z/3Z)× (Z/55Z× Z/5Z)× Z/74Z.

Moreover, if E(Q)[9] is trivial, then E(K)Tors is a subgroup of

(Z/214Z× Z/24Z)× (Z/35Z× Z/3Z)× (Z/55Z× Z/5Z)× Z/74Z.

Thus, |E(K)Tors| is a divisor of 219 · 38 · 56 · 74.

Proof. One can quickly compute that

a(2, 5) = 5, a(3, 5) = a(5, 5) = 2, and a(`, 5) = 1 for all ` > 5.

Recall that m(`,N) = a(`,N) + 2 max(a(`,N), b(`) + 1, 2 or 5). Thus,

m(2, 5) = 5 + 2 max(5, b(2) + 1, 5) = 15 since b(2) + 1 ≤ 4;

m(3, 5) = 2 + 2 max(2, b(3) + 1, 2) =

{
6 if b(3) = 0 or 1

8 if b(3) = 2;

m(5, 5) = 2 + 2 max(2, b(5) + 1, 2) = 6 since b(5) = 0 or 1;

m(7, 5) = 1 + 2 max(1, b(7) + 1, 2) = 5 since b(7) = 0 or 1.

The proposition now follows from Theorem 17.

In the previous proposition, one may take K to be the maximal unramified

extension of the field F = Q({
√
m : m ∈ Z}) that appears in Fujita’s theorem,

because eK(2) = 4 and eK(`) ≤ 2 for all ` > 2. Notice, though, that K/F is an

infinite extension (see, for example, [10], Corollary 7). Moreover, there are many

other possibilities for K which do not fit in Fujita’s setup. For an obvious example,

K may be the maximal unramified extension of a cyclic Galois extension F/Q of

degree 3, 4 or 5.
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