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Abstract. Let A be an elliptic curve over a number field K, let p ≥ 7
be a prime and let ℘ be a prime ideal of K lying above p, such that the
j-invariant of A is non-integral at ℘. We extend a result of Rohrlich to
show that a certain deformation of the Galois representation attached
to the Tate module of A is surjective, under some restrictions involving
the ramification index of ℘, p and j(A).

1. Surjectivity of a Galois Representation

Let K be a number field, fix K, an algebraic closure of K, and let j be
transcendental over K. Let E be an elliptic curve defined over the field
K(j) such that j(E) = j. Given a prime number p ≥ 7, the natural action

of Gal(K(j)/K(j)) on the group of p-torsion points of E induces a repre-

sentation π̃E : Gal(K(j)/K(j)) −→ SL(2,Fp). The universal deformation of
π̃E, with respect to certain ramification conditions (see [Roh], [Roh04]), is
an epimorphism

πE : Gal(K(j)/K(j)) −→ SL(2,Zp[[X]]).

Let K̃ be the extension of K generated by all roots of unity of p-power
order. In [Roh00a], [Roh00b], D. E. Rohrlich showed that πE descends to
an epimorphism

ρE : Gal(K(j)/K̃(j)) −→ SL(2,Zp[[X]]).

Notice that ρE encapsulates arithmetic information which was not present
in πE.

Let A be an elliptic curve defined over K with j-invariant j(A) 6= 0, 1728
and suppose that A coincides with the fiber of E at j = j(A). Choose a

place σ of K(j) extending the place j = j(A) of K̃(j), and write D and I for

the corresponding decomposition and inertia subgroups of Gal(K(j)/K̃(j)).
We “specialize” the representation ρE to j = j(A) by restricting the map to
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the decomposition group D. By the ramification constraints of the universal
deformation (see [Roh00b]), the map ρE is unramified outside {0, 1728,∞},
thus ρE|D factors through D/I ∼= Gal(K/K̃). We obtain a representation:

ρA : Gal(K/K̃) −→ SL(2,Zp[[X]]).

If we write ρA : Gal(K/K̃) −→ SL(2,Zp) for the representation determined

up to equivalence by the natural action of Gal(K/K̃) on the Tate module
of A, then, by construction, ρA is a deformation of ρA, and in particular
ρA|X=0 = ρA. The image of ρA, which has been characterized by M. Deuring
[Deu53], [Deu58], J.-P. Serre [Ser72], J. Tate [ST68] and others, depends
drastically on whether the elliptic curve A has complex multiplication or
not.

In light of the results of Deuring, Serre and Tate, one would naturally
want to know how large is the image of the representation ρA. Let

ρ̃A : Gal(K/K̃) → SL(2,Fp)

be the representation induced by the action of Galois on the points of order
p on A. In [Roh04], Rohrlich proved in the case K = Q that if ρ̃A is
surjective and νp(j(A)) = −1 then ρA is surjective, where νp is the usual
p-adic valuation on Q. In this note we generalize Rohrlich’s results to more
general number fields.

Fix ℘, a prime of K lying above a prime p ≥ 7. We write ν℘ for the
standard ℘-adic valuation on K, so that, for a uniformizer π of ℘, ν℘(π) = 1
and ν℘(p) = e, where e = e(℘ | p) is the ramification index.

Theorem 1.1. If ρ̃A is surjective, e is not divisible by p−1, ν℘(j(A)) = −t
with t ∈ N, gcd(p, t) = 1, and

t <
ep

p− 1
= e+

e

p− 1
;

then ρA is surjective.

Proof. The strategy of the proof is the same as in [Roh04], proof of Theorem
1 (which shows the case K = Q). We summarize it here and point out where
the proof diverges for a number field K as in the statement of Theorem 1.1.

It suffices to verify the surjectivity of the projective representation

PρA : Gal(K/K̃) −→ PSL(2,Λ)

because the only subgroup of SL(2,Λ) with projective image PSL(2,Λ) is
the full group SL(2,Λ). We similarly define projective maps PρE and PρA.
By the definition of ρA, in order to verify the surjectivity of PρA it suffices
to show that the image via PρE of the decomposition group D is the full
group PSL(2,Λ).
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The kernel of ρE determines a fixed field L, in particular Gal(L/K̃(j)) ∼=
PSL(2,Zp[[X]]). For i ≥ 1, let Li ⊆ L be the fixed field determined by the
kernel of the reduction map

Gal(L/K̃(j)) ∼= PSL(2,Zp[[X]]) → PSL(2,Zp[[X]]/(p,X)i).

Recall that we have chosen a place σ of K(j) extending j = j(A). Let `ν
be the residue class field of σ |Lν , i.e. `ν = σ(Lν)\{∞}.

A criterion of Boston ([Bos86], Prop. 2, p. 262) reduces the problem to

proving that the image ofD in Gal(L2/K̃(j)) maps to all of PSL(2,Λ/(p,X)2).

Equivalently, one needs to show that [L2 : K̃(j)] = [`2 : K̃]. Notice that the
assumption on the surjectivity of ρ̃A implies that ρA is surjective (see, for
example, [Ser68], IV-23, Lemma 3), and so is PρA, the projectivization of

ρA. It follows that [L1 : K̃(j)] = [`1 : K̃], therefore it suffices to prove that

[L2 : L1] = [`2 : `1].(1)

1.1. Siegel Functions. We follow the definitions established in [Roh04].

Definition 1.2. Let p ≥ 7 be a prime and define R = F2
p\{(0, 0)}.

(1) M is the set of all functions m : R → Z with m(r) = m(−r). M is
clearly a Z-module.

(2) We write N for the Z-submodule of M consisting of all those m ∈
M that reduce modulo p to a function defined by a homogeneous
polynomial of degree two over Fp.

Let r ∈ R and let s = (s1, s2) ∈ Z2 be any lift of r, i.e. s = (s1, s2) ≡ r
mod p and put a = as = 1

p
(s1, s2), then the symbol fr represents any Siegel

function g12
a (see [KL81], p. 29). If s ∈ Z2 is replaced by another lift of r

then fr is multiplied by a pth root of unity (for this see [KL81], Remark on
p. 30), so the symbol fr(τ) is only well defined up to pth roots of unity. For
m ∈M we also define the symbolic mth power:

fm =
∏
r∈R

fm(r)
r .

The key ingredient in the proof of Theorem 1.1 is given by the following
result of Rohrlich ([Roh04], Theorem 2).

Theorem 1.3. The extension L2/L1 is generated by pth roots of Siegel
units. More precisely, L2 = L1({(fm)1/p : m ∈ N}).

Using the previous theorem, Rohrlich reduces the proof of (1) to the
following local statement (see [Roh04], p. 19, 20; the argument is valid in
our case, by simply replacing Q by K). Since ν℘(j(A)) = −t < 0 there
is a unique Tate curve B over K℘ with j(B) = j(A). Suppose there is a
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m ∈ N such that σ(fm)1/p /∈ K℘(B[pν ]) for all sufficiently large ν ∈ N, then
equality (1) follows.

Let O℘ be the ring on integers in K℘ and let q be the unique element
of πO℘ such that j(q) = j(B), where π, as before, is a uniformizer of ℘.
Proposition 8 of [Roh04], can be generalized to:

Proposition 1.4. There exists m ∈ N such that:

σ(fm) = qµ(1− uq)(1− vq2) = qµ(1 + wq)

with µ ∈ Z, u, w ∈ O×
℘ , and v ∈ O℘. In particular, σ(fm) ∈ K℘.

The proof found in [Roh04] is valid without change. Let f = fm with
m as in the previous proposition. Hence, in order to finish the proof of
Theorem 1.1, we need to show:

Proposition 1.5. Suppose that v℘(j(A)) = −t with t ∈ N, e is not divisible
by p− 1, gcd(p, t) = 1, and

t <
ep

p− 1
= e+

e

p− 1
;

then σ(f)1/p /∈ K℘(B[pν ]) for all sufficiently large ν ∈ N.

Proof. It suffices to show that σ(f)1/p has degree p overK℘(B[pν ]) for all suf-
ficiently large ν. Note that K℘(B[pν ]) = K℘(ζ, q

1/pν
) where ζ is a primitive

pνth root of unity (see [Lan87], Chapter 15, Theorem 3).
Since v℘(j(A)) = −t, then v℘(q) = t (and by assumption gcd(p, t) = 1).

It follows that gcd(v℘(q), p
ν) = 1 and the order of q in K×

℘ /K
×pν

℘ is pν .

Recall that by Proposition 1.4 we can write σ(f) as qµ(1−uq)(1−vq2) =
qµ(1+wq) with µ ∈ Z, u,w ∈ O×

℘ , and v ∈ O℘. We claim that α := q−µσ(f)

has degree pν in K×
℘ /K

×pν

℘ . For suppose the contrary, i.e. αp
ν−1

= βp
ν

for

some β ∈ K℘. Then βp = ξα with ξ a pν−1th root of unity and ξ = βpα−1 ∈
K℘. Since K℘ cannot contain nontrivial pth roots of unity (or p− 1 would
divide e), it follows that ξ = 1.

Hence α = βp. Let β = 1 + bπ for some b ∈ O℘, π a uniformizer for ℘.
By the binomial theorem:

(1 + bπ)p =

p∑
h=0

(
p

h

)
bhπh

so the terms in βp − 1 have ℘-adic valuations in the list

p(ν℘(b) + 1), i(ν℘(b) + 1) + e with 1 ≤ i ≤ p− 1

and the minimum non-zero valuation is either p(ν℘(b) + 1) or ν℘(b) + 1 + e
(and both cannot be equal, since that implies that p−1 divides e). This value
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must equal t since we are assuming α = 1 + wq = βp, but t is not divisible
by p by hypothesis, so the minimum valuation must be t = ν℘(b) + 1 + e.

First suppose t < e+1. This implies that ν℘(b) < 0 which is contradictory
since b ∈ O℘. Otherwise e + 1 ≤ t < ep

p−1
and the fact that ν℘(b) + 1 + e <

p · (ν℘(b) + 1) implies that

p >
ν℘(b) + 1 + e

ν℘(b) + 1
.

Substituting ν℘(b) = t − e − 1 we obtain p > t
t−e and hence t > ep

p−1
(since

t > e) which contradicts our assumption on t. Therefore, we conclude that
α is not a p-th power.

Remark 1.6. Using the ℘-adic logarithm and exponential maps one can
prove that if ν℘(γ) > e + e

p−1
then (1 + γ)1/p ∈ K℘. So the bound on t in

the theorem is best possible, at least for this method of proof.

Thus we have proved that the order of α in K×
℘ /K

×pν

℘ is exactly pν .

Therefore, the subgroup of K×
℘ /K

×pν

℘ generated by the cosets of q and σ(f)

has order p2ν .

Lemma 1.7. Let L be a field with char(L) = 0, and let ζ be a primitive pνth
root of unity. Let M = L(ζ). Then the following natural map is injective:

L×/L×p
ν −→M×/M×pν

.

We claim that Proposition 1.5 follows using the previous lemma (which
we will prove below). Indeed, let Fν = K℘(ζ) where ζ is a primitive pνth
root of unity. The natural map

K×
℘ /K

×pν

℘ −→ F×
ν /F

×pν

ν

is injective by the previous Lemma, so the image of the group generated by
the cosets of q and σ(f) also has order p2ν .

It follows that [Fν(q
1/pν

, σ(f)1/pν

) : Fν ] = p2ν and we can deduce that

[Fν(q
1/pν

, σ(f)1/pν

) : Fν(q
1/pν

)] = pν .

Hence σ(f)1/pν

has degree pν over Fν(q
1/pν

) = K℘(B[pν ]), so σ(f)1/p has
degree p over K℘(B[pν ]). �

Proof of Lemma 1.7. As a consequence of Hilbert Theorem 90 we obtain:

H1(Gal(L/L), µpν ) = L×/L×p
ν

, and H1(Gal(M/M), µpν ) = M×/M×pν

.

Moreover, the natural map L×/L×p
ν −→ M×/M×pν

corresponds to the
restriction map in cohomology, which fits in the exact sequence:

0 → H1(Gal(M/L), µpν ) → H1(Gal(L/L), µpν ) → H1(Gal(M/M), µpν )
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Thus, in order to show that the map is injective, is enough to show that

H1(Gal(M/L), µpν ) = 0.

Since M = L(ζ) where ζ is a primitive pνth root of unity, we can think
of Gal(M/L) as a subgroup of (Z/pνZ)× acting on µpν ∼= Z/pνZ via multi-
plication, and to finish the proof, we must prove:

Lemma 1.8. H1(G,Z/pνZ) = 0 for any G ≤ (Z/pνZ)×.

Statements similar to this one can be found in the literature (see e.g.
[Rub99], Lemma 6.1), but for the convenience of the reader we include a
proof of the precise statement needed here.

Proof. For this, let ψ : G → Z/pνZ be a cocycle. We would like to prove
that ψ is actually a coboundary. Since G ≤ (Z/pνZ)×, G is cyclic, G = 〈a〉
for some a. Moreover, suppose that the order of G is n0. Since ψ is a cocycle
ψ(1) = 0 and, inductively, one can show that

ψ(at) = (at−1 + at−2 + ...+ 1)ψ(a) =

(
at − 1

a− 1

)
ψ(a).

Note that 1
a−1

might not make sense in Z/pνZ, so we also let a be an

integer representative of the congruence class, and we write (a
t−1
a−1

) for the

congruence class of at−1
a−1

∈ Z modulo pνZ.

Note that n0, the order of G, divides pν−1(p− 1), the order of (Z/pνZ)×.
First, suppose that gcd(n0, p − 1) > 1. Then a 6= 1 mod p, since the
elements which are congruent to 1 modulo p generate subgroups with order
a power of p. Since a 6= 1 mod p, a− 1 ∈ (Z/pνZ)× and it follows that:

ψ(at) =

(
at − 1

a− 1

)
ψ(a) = (at − 1)

ψ(a)

a− 1
= at

ψ(a)

a− 1
− ψ(a)

a− 1
(♣)

with ψ(a)
a−1

∈ Z/pνZ. Hence ψ is a coboundary in this case.

Only the case n0 = pν−m remains, where m is an integer satisfying 1 ≤
m < ν. This corresponds to the case G = {α ∈ (Z/pνZ)× : α ≡ 1
mod pm}. Thus a, the chosen generator of G, satisfies a ≡ 1+upm mod pν ,
with u 6= 0 mod p. It suffices to show that ψ(a) ≡ 0 mod pm since that

would imply that ψ(a)
a−1

∈ Z/pνZ and we can proceed as in (♣) to prove that
ψ is a coboundary. We start with:

0 ≡ ψ(1) ≡ ψ(a · apν−m−1) ≡ ψ(a) + a · ψ(ap
ν−m−1) mod pν

and

ψ(ap
ν−m−1) ≡

(
ap

ν−m−1 − 1

a− 1

)
ψ(a) mod pν
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thus

0 ≡ ψ(a) + a · (a
pν−m−1 − 1

a− 1
)ψ(a) mod pν . (z)

It is easy to see that (1+upη)p
κ

= 1+u′pη+κ, with u ≡ u′ mod p. Hence:

a ·

(
ap

ν−m−1 − 1

a− 1

)
=
ap

ν−m − 1

a− 1
− 1 ≡ pν−m − 1 mod pν+1

and the congruence remains true modulo pν . Finally, substituting in (z)
above, we obtain:

0 ≡ ψ(a) + (pν−m − 1)ψ(a) ≡ pν−mψ(a) mod pν .

Therefore, ψ(a) ≡ 0 mod pm, which concludes the proof of the Lemma. �

�

2. Example

Let K = Q(
√
−11), p = 11 and set τ = 1+

√
−11

2
. We write ℘ for the unique

prime ideal ofK lying above 11, thus the ramification index e = e(℘ | p) = 2.
Let A/K be the curve:

A : y2 + (2τ − 1)y = x3 + τx2, j(A) =
−61440− 851968τ

11 · 4931

∆A = −3795−352τ, NK/Q(∆A) = 33·112·3941, NK/Q(j(A)) =
224 · 33

112 · 3941

In particular, t = −v℘(j(A)) = 2. Note that e = 2 is not divisible by
p− 1 = 10; gcd(p, t) = gcd(11, 2) = 1 and ep

p−1
= 11

5
> 2 = t.

Hence it remains to check that the representation ρ̃A : Gal(K/K̃) →
SL(2,Fp) is surjective. In [Ser72], Proposition 19, J-P. Serre gives condi-
tions for a subgroup G of SL(2,Fp) to be the full group SL(2,Fp). We
reproduce the result here for the reader’s convenience:
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Proposition. Suppose p ≥ 5 and the following hypotheses are satisfied:

(1) The subgroup G contains a matrix s1 such that Tr(s1)
2− 4 det(s1) is

a non-zero quadratic residue modulo p, and Tr(s1) 6= 0 mod p;
(2) G contains a matrix s2 such that Tr(s2)

2−4 det(s2) is not a quadratic
residue modulo p, and Tr(s2) 6= 0 mod p;

(3) G contains a matrix s3 such that u = Tr(s3)
2/ det(s3) is not 0, 1, 2

or 4 modulo p and u2 − 3u+ 1 6= 0 mod p.
Then G is the full group SL(2,Fp).

Let G < SL(2,Fp) be the image of the representation ρ̃A. Let SA denote
the set of all prime ideals of K such that A has bad reduction. SA is the set
of prime ideals which divide ∆A, i.e. SA = {3, 11, 3941}. Then, for every

ν /∈ SA ∪ {℘} the image via ρ̃A of a Frobenius element πν ∈ Gal(K/K̃) is a
matrix that we also denote by πν such that:

(1) Tr(πν) ≡ aν mod p where aν is the trace of the Frobenius automor-
phism of A at the place ν;

(2) det(πν) ≡ N(ν) mod p.

In order to conclude that G = SL(2,Fp) we exhibit three Frobenius elements
s1, s2, s3 (s3 = s2) that satisfy the conditions in the proposition above. The
trace of the Frobenius automorphism was calculated using the computer
software PARI [Pari00].

• The prime number 5 is split in K. Let ν5 be one of the prime ideals
of K lying above 5 (so N(ν5) = 5). The trace of the Frobenius
automorphism is aν5 = −1. Let s1 = πν5 . Then:

Tr(s1)
2 − 4 det(s1) ≡ (−1)2 − 4 · 5 ≡ −19 ≡ 52 mod 11.

• The prime number 13 is inert in K. Let ν13 be the prime ideal of
K lying above 13 (so N(ν13) = 169). The trace of the Frobenius
automorphism is aν13 = 10. Let s2 = πν13 . Then:

Tr(s2)
2 − 4 det(s2) ≡ (10)2 − 4 · 169 ≡ −576 ≡ 7 mod 11

and 7 is not a quadratic residue modulo 11.
• Let s3 = s2 and let u = Tr(s3)

2/ det(s3) ≡ 100
169

≡ 3 mod 11. Then
u2 − 3u+ 1 ≡ 1 mod 11.

Therefore ρ̃A is surjective and all conditions of Theorem 1.1 have been ver-

ified, thus the map ρA : Gal(K/K̃) → SL(2,Z11[[X]]) is surjective. �
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