
RANKS OF ABELIAN VARIETIES OVER INFINITE
EXTENSIONS OF THE RATIONALS
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Abstract. Let S be an infinite set of rational primes and, for some
p ∈ S, let Q(p)

S be the compositum of all extensions unramified outside S

of the form Q(µp, p
√

d), for d ∈ Q×. If (σ) = (σ1, . . . , σn) ∈ Gal(Q/Q)n,
let (Q(p)

S )(σ) be the intersection of the fixed fields by 〈σi〉, for i = 1, . . . , n.
We provide a wide family of elliptic curves E/Q such that the rank of
E((Q(p)

S )(σ)) is infinite for all n ≥ 0 and all (σ) ∈ Gal(Q/Q)n, subject
to the parity conjecture.

Similarly, let (A/Q, φ) be a polarized abelian variety, let K be a qua-
dratic number field fixed by (σ) ∈ Gal(Q/Q)n, let S be an infinite set
of primes of Q and let Kp-dihe

S be the maximal abelian p-elementary
extension of K unramified outside primes of K lying over S and dihe-
dral over Q. We show that, under certain hypotheses, the Zp-corank
of Selp∞(A/F ) is unbounded over finite extensions F/K contained in
(Kp-dihe

S )(σ)/K.
As a consequence, we prove a strengthened version of a conjecture of

M. Larsen in a large number of cases.

1. Introduction

Let A be an abelian variety defined over Q, let Q be a fixed algebraic
closure, let Qab be the maximal abelian extension of Q and let L/Q be an
extension with L ⊆ Q. If L/Q is finite then the group of L-rational points
of A, denoted as usual by A(L), is finitely generated by the Mordell-Weil
Theorem. On the other hand, A(Q) has an infinite free rank (see [5] for
example). These two facts prompt the following:

Question 1.1. For what infinite extensions L/Q is A(L) of infinite rank?

The torsion subgroup of A(Qab) is finite for any abelian variety A/Q (this
is a theorem due to K. Ribet [21]). Y. G. Zarhin ([30], see also [27]) has also
shown that if K is a number field then the torsion subgroup of A(Kab) is
finite if and only if A has no abelian subvariety with complex multiplication
over K. An interesting consequence of the deep work of K. Kato ([10])
and D. Rohrlich ([23],[25]), together with Ribet’s theorem, provides some
information about the question above:

Theorem 1.2. (Kato, Ribet, Rohrlich) Let E/Q be an elliptic curve, let Σ
be a finite set of primes of Z and let Qab

Σ be the maximal abelian extension
of Q unramified outside Σ. Then E(Qab

Σ ) is finitely generated.
1
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See also [15] for B. Mazur’s similar results of finite generation of the
Mordell-Weil group in Zp-extensions of number fields. For recent progress
and results of infinite generation in the non-abelian setting, see [1], [26] and
[14].

In the rest of this article, S will denote an infinite set of primes of Z, while
Σ is reserved for finite sets of primes. The symbol Qab

S (resp. QS) stands for
the maximal abelian extension (resp. maximal extension) of Q unramified
outside S and contained in Q. For a prime p ≥ 2, we will write µp ⊂ Q for
the group of all pth roots of unity and we define Q(p)

S as the compositum of
all extensions of Q of the form Q(µp,

p
√

d), for some d ∈ Q×, and unramified
outside S. We note Q(p)

S /Q is Galois for all p but non-abelian for p > 2. If
(σ) = (σ1, . . . , σn) ∈ Gal(Q/Q)n and F ⊂ Q is a field then the symbol F (σ)

stands for the intersection of all fixed fields F 〈σi〉, for i = 1, . . . , n, where 〈σi〉
is the subgroup generated by σi. As we discussed above, the torsion subgroup
of E(Q(p)

S ) is finite, for all primes p, thus the torsion of E((Q(p)
S )(σ)) is also

finite for all (σ) ∈ Gal(Q/Q)n. Our first theorem is:

Theorem 1.3. Let E/Q be an elliptic curve and let S be an infinite set of
primes.

(1) Suppose that rankZ(E(Q)) is odd. If the parity conjecture holds for
all quadratic twists of E then the rank of E((Q(2)

S )(σ)) is infinite, for
all n ≥ 0 and all (σ) ∈ Gal(Q/Q)n. Hence rankZ(E((Qab

S )(σ))) is
infinite as well.

(2) Suppose E/Q does not have wild ramification at 2 and 3. There are
infinitely many primes p > 2 such that if the parity conjecture holds
for E over extensions of degree p and we set S′ = S∪{p} then the rank
of E((Q(p)

S′ )
(σ)) is infinite, for all n ≥ 0 and all (σ) ∈ Gal(Q/Q)n.

In particular, if the hypotheses of (1) or (2) are satisfied, then the rank of
E(Q(σ)

S ) is infinite.

The previous statements are a combination of Theorem 5.3 and Corollary
6.4 below. In most cases, there is a choice of prime p of (2) with p ∈ S. We
offer a concrete example in the last section of the article.

If A is an abelian variety defined over a number field F and p is a prime
then Selp∞(A/F ) is the usual Selmer group sitting in an exact sequence:

0 → A(F )⊗Qp/Zp → Selp∞(A/F ) →Ш(A/F )[p∞] → 0

where Ш(A/F )[p∞] denotes the torsion elements of p-power order in the
Tate-Shafarevich group of A/F . The Tate-Shafarevich conjecture (i.e. the
group Ш(A/F ) is finite) implies that the rank of A(F ) and the corank of
Selp∞(A/F ) coincide. As a consequence of parity for Selmer groups (recently
shown by J. Nekovář and B-D. Kim, see Theorem 5.2 below) and the methods
used to prove Theorem 1.3 we obtain:
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Theorem 1.4. Let E/Q be an elliptic curve and let S be an infinite set of
primes. Suppose that the root number of E/Q is W (E/Q) = −1 and let p > 2
be a prime of good reduction for E/Q. Then the Zp-corank of Selp∞(E/F ) is
unbounded over number fields F contained in ((Q(2)

S )(σ)), for all n ≥ 0 and
all (σ) ∈ Gal(Q/Q)n. In particular, if the p-primary part of Ш(Ed/Q) is
finite, for all square-free d ∈ Q×, then the rank of E((Q(2)

S )(σ)) is infinite.

See Section 5.1 for a proof. If K is a quadratic extension of Q, the symbol
Kp-dihe

S stands for the maximal abelian p-elementary extension of K unram-
ified outside S and dihedral over Q:

Theorem 1.5. Let (A/Q, φ) be a polarized abelian variety, let n ≥ 0 and
let (σ) ∈ Gal(Q/Q)n be fixed. Suppose there is a quadratic extension K/Q,
fixed by (σ), such that corankZp Selp∞(A/K) is odd, for some prime p > 2
which splits in K and such that gcd(p, deg(φ)) = 1. Let S be an infinite set
of rational primes which does not include any of the primes of bad reduction
for A/Q, and such that S contains infinitely many primes either inert in
K and congruent to −1 mod p, or split in K and congruent to 1 mod p
. Then the corank of Selp∞(A/F ) is unbounded over finite extensions F/K

contained in the field (Kp-dihe
S )(σ).

Theorems 1.3, 1.4 and 1.5 may be regarded as a partial complement to
Theorem 1.2 and also as a strengthened version of the following conjecture
of M. Larsen:

Conjecture 1.6 (Larsen, [13]). Let A/Q be an abelian variety. Then A(Q(σ))
is of infinite rank for all n ≥ 0 and all (σ) ∈ Gal(Q/Q)n.

G. Frey and M. Jarden have shown (see [5]) that there is a subset H of
Gal(Q/Q) of Haar measure 1 such that A(Q(σ)) is of infinite rank for all
(σ) ∈ Hn, thus Larsen’s conjecture claims that H is equal in fact to all of
Gal(Q/Q). B-H. Im and Larsen have shown that the conjecture holds true
for n = 1 (see [8]). As a consequence of Theorems 1.3 (resp. Thm. 1.5), if
we assume the parity conjecture (resp. if the p-primary parts of the Tate-
Shafarevich groups Ш(A/F ) are finite), then Larsen’s conjecture holds true
for a wide class of elliptic curves and all n ≥ 0. In view of Theorem 1.3, it
seems very plausible that the following is also true:

Conjecture 1.7. Let S be an infinite set of primes and let A/Q be an
abelian variety. Then rankZ(A((Qab

S )(σ))) is infinite, for all n ≥ 0 and all
(σ) ∈ Gal(Q/Q)n.

A few remarks are in order:

Remark 1.8. The proof of Theorem 1.3 relies heavily on recent deep results
of Mazur and K. Rubin (see [16]). Part (1) of Theorem 1.3 (see Thm. 5.3)
is shown by extending a method used in [9], and the proof should generalize
to abelian varieties in the obvious way (and thus providing more evidence
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towards Conjecture 1.7). Moreover, if E(Q) is of even rank then one can find
infinitely many twists Ed/Q of odd rank and apply Theorem 1.3 (or similarly
apply Theorem 1.5) to show that there is infinitely many open subgroups H
of index 2 in Gal(Q/Q) such that for all n ≥ 0 and all (σ) ∈ Hn the rank of
E((Q(2)

S )(σ)) is infinite.
Remark 1.9. The proof of part (2) of Thm. 1.3 (see Cor. 6.4) relies on
recent results of V. Dokchitser in [3]. The condition on the wild ramification
does not seem essential but rather a simplification, for the local root numbers
in characteristic 2 and 3 are much harder to calculate in the presence of wild
ramification (see [4] for results on the calculation of such root numbers).

Remark 1.10. From now on, for a field F , let GF = Gal(F/F ). It is worth
remarking that the class of fields S = {(Q(p)

S )(σ) : S infinite, n ≥ 0, (σ) ∈
Gn
Q} is much larger than the class of fields F = {(Q(p))(σ

′) : m ≥ 0, (σ′) ∈
Gm
Q }. The inclusion F ⊂ S is clear, by setting S to be the set of all rational

primes. To show that the inclusion is not an equality, we show choices (for
any m ≥ 0) of S, σ′ such that (Q(p))(σ

′) is not contained in (Q(p)
S )(σ), for any

choice of σ. Let S be an infinite set of primes with a complement, i.e. there
is q prime and q /∈ S. Pick (σ′) fixing α = p

√
dq for some d ∈ Z such that dq

is p-power free, then Q(α) ⊂ (Q(p))(σ
′) but Q(α)/Q is ramified at q /∈ S and

so Q(α) * (Q(p)
S )(σ) for any choice of (σ).

Remark 1.11. After finishing this work, it has been brought to my attention
that, in an independent project ([19]), S. Petersen has shown that if A/Q
is an abelian variety and W (A(Q)) = −1 then the rank of A((Q(2))(σ)) is
infinite, assuming that the parity conjecture holds. The key difference with
Theorem 1.3 above is that our method allows controlled ramification outside
any fixed infinite set of primes S, and provides results for Q(p)

S for p > 2.

2. A Further Remark on “Large” Fields

In this section we explain how Theorem 1.3 may also be interpreted as
further evidence towards a conjecture which claims that Qab is a large field,
in the sense of F. Pop (see [20]), and perhaps as evidence that (Qab

S )(σ) is
large too, for any infinite set of primes S, and any n ≥ 0, σ ∈ Gn

Q. A field F

is large if any smooth curve C/F with one F -rational point has necessarily
infinitely many F -rational points. The connection with our problem is the
following proposition (due to A. Tamagawa):
Proposition 2.1 ([12], Prop. 1). Let F be a large field (in the sense of Pop)
of characteristic zero and let E/F be an elliptic curve. Then rankZ(E(F ))
is infinite.

As a consequence of Theorem 1.2 and Tamagawa’s proposition, the field
Qab

Σ is not large, for any finite set of primes Σ. On the contrary, Theorem
1.3 (or Conjecture 1.7 if it holds) may be seen as evidence that (Qab

S )(σ) is
large, for any S and (σ) as before.
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3. Strategy

In this section we establish the strategy for the proof of the main theorem.
Namely, Theorem 3.3 below will show that if an abelian variety A/Q satisfies
a certain property (Tn

S,p) then the rank of A((Q(p)
S )(σ)) is infinite for all

(σ) ∈ Gn
Q.

Lemma 3.1. Let n ≥ 0, t ≥ 1 be integers, let p ≥ 2 be a prime and let
a1, . . . , at be elements in a number field K. Let

L = K(µp, p
√

a1, . . . , p
√

at)

be a number field with [L : K] = (p − 1) · pt, and let σ = (σ1, . . . , σn) be an
n-tuple in Gn

K . If t ≥ n + 1 then there is at least one extension K ′/K of
degree p with K ⊂ K ′ ⊂ L ∩K

(σ) with K ′ = K( p
√

c), c 6= 1 and

c =
t∏

j=1

(aj)ej , ej = 0, 1, . . . , p− 1.(1)

Proof. The case n = 0 is trivial. Let n ≥ 1 be an integer, let p ≥ 2 be prime
and let L/K and (σ) ∈ Gn

K be as in the statement of the lemma. As an
immediate consequence of the hypotheses, L/K is Galois and L/K(µp) is
p-elementary abelian. In particular, the order of each γ ∈ G = Gal(L/K)
divides (p − 1)p and the order of a subgroup 〈γ1, . . . , γm〉 ≤ G divides the
number (p − 1)pm. In particular, let γi be the restriction of σi to L and
let H be the subgroup generated by γi, for i = 1, . . . , n. Thus pt−n divides
|G|/|H| and, since t ≥ n + 1, p divides |G|/|H|. Let LH be the fixed field of
L by H. Then p divides the degree of the abelian extension LH(µp)/K(µp).
Let F/K(µp) be a subextension of degree p contained in LH(µp)/K(µp).
Then F = K(µp, p

√
c) for some c as in Eq. (1), because a simple counting

argument, and Kummer theory, shows that all degree p extensions of K(µp)
inside L are of this form. Hence K ′ = K( p

√
c) ⊆ LH(µp) and so there is a pth

root of unity ζ such that K ′′ = K(ζ p
√

c) ⊆ LH , and since ζ p
√

c is another pth
root of c we may call it p

√
c. Thus K ′ = K( p

√
c)/K is fixed by (σ). ¤ ¤

Definition 3.2. Let S be an infinite set of primes of Z. Let n be a non-
negative integer and let p ≥ 2 be a prime. We say that an abelian variety A/Q
satisfies property (Tn

S,p) if for all i ≥ 1 there exist Di = (di,1, . . . , di,n+1) ∈
(Q×)n+1 such that:

(1) Put L0 = Q(µp) and define Li = Li−1({ p
√

di,j : j = 1, . . . , n+1}) for
all i ≥ 1. Then [Li : Li−1] = pn+1;

(2) For all i, j ≥ 1, the numbers di,j are only divisible by primes in S.
Consequently, the fields Li of (1) are unramified outside S ∪ {p};

(3) For all i ≥ 1 and d ∈ Q× of the form

d =
n+1∏

j=1

(di,j)ej with ej = 0, . . . , p− 1
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the rank of A(Q( p
√

d)) is strictly greater than that of A(Q).

As before, if S is a set of primes of Z, the symbol Qab
S is the maximal

abelian extension unramified outside S and Q(p)
S is the compositum of all

extensions of Q unramified outside S and of the form Q(µp,
p
√

d), for some
d ∈ Q×.
Theorem 3.3. Let n ≥ 0 be a fixed integer, let S ∪ {p} be an infinite set of
primes of Z and let A/Q be an abelian variety satisfying the property (Tn

S,p).
Further, assume that A has no abelian subvariety with complex multiplication
defined over Q(µp). Then for each (σ) = (σ1, . . . , σn) ∈ Gal(Q/Q)n, the rank
of A((Q(p)

S )(σ)) is infinite.

Proof. Let n ≥ 0, p and S be as in the statement and suppose A/Q satisfies
property (Tn

S,p). Let Di, i ≥ 1, be the elements of (Q×)n+1 satisfying (1), (2)
and (3) as in Definition 3.2. Fix an element (σ) ∈ Gn

Q. We will inductively
construct extensions Km/K of degree p for all m ≥ 1, unramified outside S,
fixed by (σ), and points Pm ∈ A strictly defined over Km (and not just over
Q) as follows.

Let Li, i ≥ 0, be defined as in (1) of Defn. 3.2. Then L1/Q is an extension
of degree (p − 1)pn+1, unramified outside S. By Lemma 3.1, there exists
a extension K1/Q of degree p, contained in L1 (and therefore unramified
outside S), such that K1 ⊂ (Q(p)

S )(σ). Moreover K1 = Q( p
√

d) for some
d ∈ Q×

d =
n+1∏

j=1

(d1,j)ej with ej = 0, . . . , p− 1

and, by (3) of Def. 3.2, A(K1) is of rank greater than the rank of A(Q).
Hence A(K1) contains a point of infinite order P1, strictly defined over K1.

We complete the proof by induction on m. Suppose that for i = 1, . . . , m,
we have chosen extensions Ki/Q of degree p unramified outside S, with
Ki ⊂ Li and independent points Pi ∈ A(Ki) of infinite order, strictly de-
fined over Ki. Since Lm+1/Lm is an extension of degree pn+1, we also have
Q({ p

√
dm+1,j : j = 1, . . . , n + 1})/Q is of degree pn+1. By Lemma 3.1, there

exists an extension Kt+1/Q of degree p, contained in Lm+1 (and therefore
unramified outside S), and Km+1 ⊂ (Q(p)

S )(σ). As before, Km+1 = Q( p
√

d)
for some d ∈ Q×

d =
n+1∏

j=1

(dm+1,j)ej with ej = 0, . . . , p− 1

and, by (3) of Def. 3.2, A(Km+1) contains a point of infinite order Pm+1,
strictly defined over Km+1. Notice that in fact Km+1 is not contained in Lm

and therefore Km+1 6= Ki for all i = 1, . . . ,m. Hence Pm+1 is necessarily in-
dependent from the group generated by P1, . . . , Pm. By assumption, A has no
abelian subvarieties with complex multiplication defined over Q(µp), thus by
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Zarhin’s theorem ([30], [27]), the torsion subgroup of A(Q(p)
S ) ⊂ A(Q(µp)ab)

is finite. Hence, one can extract out of {Pi}∞i=1 an infinite sequence of points
of A defined over (Q(p)

S )(σ) which are independent modulo torsion. This
concludes the proof of the theorem. ¤ ¤

4. Background on Twists and Root Numbers

In this section we provide a number of well-known results on twists of
elliptic curves, which will be used in subsequent proofs. If d ∈ Q× is a
square-free rational number, the symbol Ed stands for the quadratic twist of
the elliptic curve E/Q by d. Let NE be the conductor of E and let W (E/Q)
be the global root number (or W (E) if the field of definition is clear from
the context), i.e., the sign in the functional equation for L(E/Q, s). We will
write W (E, d) for W (Ed).

Lemma 4.1 ([22]; cf. [3], Corollary 2). Suppose E is an elliptic curve
over Q, let NE be the conductor of E/Q and let d ∈ Z be a fundamental
discriminant (i.e. either d ≡ 1 mod 4 or d = 4d′ with d′ ≡ 2, 3 mod 4, and
d, d′ square-free).

(1) If gcd(NE , d) = 1 then W (E, d) =
(

d
−NE

)
·W (E) where

( ·
·
)
is the

Kronecker symbol.
(2) If d, d′ are fundamental discriminants, relatively prime to NE and to

each other, then W (E, dd′) = W (E, d) ·W (E, d′) ·W (E).

Lemma 4.2 ([29], X.§5). Let d ∈ Q× be a square free integer, K = Q(
√

d),
let E/Q be an elliptic curve and let p > 2 be a prime of good reduction.
Then:

rankZ(E(K)) = rankZ(E(Q)) + rankZ(Ed(Q))

corankZp Selp∞(E/K) = corankZp Selp∞(E/Q) + corankZp Selp∞(Ed/Q).

Proof. There exists an isomorphism ψ : Ed → E defined over K and a
homomorphism Tr : E(K) → E(Q) induced by the trace from K down to
Q. The image of the trace map contains 2E(Q) and its kernel is precisely
ψ(Ed(Q)). A similar argument, replacing E(Q) by Selp∞(E/Q), shows the
equality of coranks. ¤ ¤

5. The Compositum of All Quadratic Extensions

Here we study some cases of elliptic curves over Q(2)
S ⊂ Qab

S , subject to
the parity conjecture, and we provide a proof of part (1) of Theorem 1.3.

Conjecture 5.1 (Parity Conjecture). Let K be a number field, let E/K
be an elliptic curve and let W (E/K) be the root number of E/K. Then
W (E/K) = (−1)rankZ(E(K)).

J. Nekovář and B-D. Kim have shown the parity conjecture for Selmer
groups over Q:
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Theorem 5.2 ([18], [11]). Let E/Q be an elliptic curve and let p > 2 be a
prime of good reduction for E. Then

corankZp Selp∞(E/Q) ≡ ords=1 L(E/Q, s) mod 2.

Equivalently, W (E/Q) = (−1)corankZp Selp∞ (E/Q).

Theorem 5.3. Let E/Q be an elliptic curve with rankZ(E(Q)) odd and let
S be an infinite set of primes. If the parity conjecture holds for all quadratic
twists of E then the rank of E((Q(2)

S )(σ)) is infinite, for all n ≥ 0 and all
(σ) ∈ Gal(Q/Q)n.

Proof. By Theorem 3.3, it suffices to show that E/Q satisfies property (Tn
S,2)

for all n ≥ 0. First, we show the existence of a set D formed by infinitely
many fundamental discriminants di ∈ Z one for each i ≥ 1, divisible only by
primes in S and such that:

(1) di and dj are relatively prime, for i 6= j;
(2)

(
di

−NE

)
= 1, and so W (E, di) = −1, for all i ≥ 1.

We construct D by induction. Suppose that d1, d2, . . . , dm have been chosen
satisfying (1) and (2) above, for some m ≥ 0. Let S = {p1, p2, . . .}, with
0 < pi < pi+1 and let pi1 , pi2 be the two smallest primes in S relatively prime
to 2NE

∏m
i=1 di. For a prime p > 2 we will write:

d(p) =

{
p , if p ≡ 1 mod 4;
−p , if − p ≡ 1 mod 4.

If one of d(pis), for s = 1 or 2, is such that
(

d(pis )
−NE

)
= 1 then define dm+1 =

d(pis), otherwise we set dm+1 = d(pi1)d(pi2) so that, in both cases we have(
dm+1

−NE

)
= 1, by the properties of the Kronecker symbol (note that dm+1 ≡ 1

mod 4 and so dm+1 is a fundamental discriminant).
Let us fix n ≥ 0 and define Di = (d(n+1)(i−1)+1, . . . , d(n+1)i) ∈ (Q×)n+1

for all i ≥ 1. We claim that these Di satisfy properties (1), (2) and (3) of
Definition 3.2. For each i ≥ 1, the fields Li are defined by

Li = Q({
√

dj : 1 ≤ j ≤ (n + 1) · i})
and since all the di’s are pairwise relatively prime by construction, none of
the numbers in Ci:

Ci = {d =
(n+1)i∏

j=1

(dj)ej : ej = 0, 1}

can be a square of Q. Thus [Li : Q] = 2(n+1)i and [Li : Li−1] = 2n+1.
Moreover, the d′is are only divisible by primes of S, thus Li/Q is unramified
outside S (notice that since all di ≡ 1 mod 4 the prime 2 does not ramify).
This shows (1) and (2).
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Finally, in order to show (3), let d ∈ Ci with d = di1 · · · dik for some
distinct indices i1 < . . . < ik. Since E(Q) has odd rank, if the Parity
Conjecture holds for E/Q then W (E) = −1, and if d ∈ Z is a fundamental
discriminant (say d ≡ 1 mod 4) relatively prime to NE then, by Lemma 4.1
the root number of Ed/Q is W (E, d) = −

(
d

−NE

)
. Then

W (E, d) = −
(

d

−NE

)
= −

(
di1

−NE

)
· · ·

(
dik

−NE

)
= −1.

If the Parity Conjecture holds for Ed/Q, then Ed/Q is of positive rank and,
by Lemma 4.2, rankZ(E(

√
d)) > rankZ(E(Q)). This shows (3) and the proof

of the theorem is complete. ¤ ¤

5.1. Proof of Theorem 1.4. Let E/Q be an elliptic curve with W (E) =
−1, let S be an infinite set of rational primes, let p > 2 be a prime of
good reduction for E and let (σ) ∈ Gn

Q be fixed. The proof of Theorem
5.3, combined with Lemma 3.1, show that there are infinitely many distinct
quadratic fields Ki = Q(

√
di), one for each i ≥ 1, fixed by (σ), and such that

W (E, di) = −1. Moreover, by Theorem 5.2, the Zp-corank of Selp∞(Edi/Q)
is odd for such di and, by Lemma 4.2:

corankZp Selp∞(E/Ki) > corankZp Selp∞(E/Q).

Let Pi, for i ≥ 1, be a point of infinite order in Selp∞(E/Ki) not present
in Selp∞(E/Q). Thus, for i 6= j, the points Pi and Pj are independent in
Selp∞(E/KiKj) because they are defined over distinct fields. Hence, the
Zp-corank of Selp∞(E/Fn) ≥ n + 1, for Fn = K1 · · ·Kn. ¤

6. Rank over Q(p)
S , for p > 2

This section completes the proof of Theorem 1.3 by providing a proof of
part (2). First we mention that a result of T. Dokchitser ([2], Thm. 1)
shows that rankZ(E(Q(3))) is infinite, without using the parity conjecture.
However, his method does not seem to yield infinite rank over subfields of
the form (Q(3))(σ). Instead, we summarize the results we need from V.
Dokchitser’s work [3] to show infinite rank over (Q(p)

S )(σ), subject to the
parity conjecture.

If p 6= l are primes, we say that E/K has wild ramification at p if the
l-adic Tate module is wildly ramified at p. If E is defined over Q then only
p = 2 or 3 may be wildly ramified and this happens when p3 divides the
conductor NE of E/Q.

Theorem 6.1 ([3], Thm. 6). Let E/Q be an elliptic curve and let p > 2
be prime. Assume that E has good reduction at p and does not have wild
ramification at 2 and 3. Let m > 1 be a p-power free integer, which is not
divisible by any prime where E has additive reduction. Then the sign in the
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functional equation for E over Q( p
√

m) is given by

W (E(Q( p
√

m))) = W (E(Q)) · (−1)(
p−1
2

+t)

where t is the number of primes of multiplicative reduction of E, which do
not divide m, and which are non-squares modulo p.

Dokchitser’s theorem has the following immediate consequence:

Corollary 6.2 (cf. [3], Cor. 7). Let E be an elliptic curve over Q without
wild ramification at 2 and 3. Let p > 2 be prime, suppose that E has good
reduction at p, and let t the number of primes of multiplicative reduction of E
which are non-squares modulo p. If (p−1

2 + t) is odd then W (E(Q( p
√

m))) 6=
W (E(Q)) for all p-power free integers m relatively prime to the primes of
additive reduction of E.

Finally, we are ready to show:

Theorem 6.3. Let E/Q, p > 2, t ≥ 0 be as in the statement of Corollary
6.2, with (p−1

2 + t) odd, and let S be an infinite set of primes, with p ∈ S. If
the parity conjecture holds for E over any extension K/Q of degree p, and E

does not have complex multiplication by Q(
√−p) then rankZ(E((Q(p)

S )(σ)))
is infinite, for all n ≥ 0 and all (σ) ∈ Gal(Q/Q)n.

Proof. Notice that if E has complex multiplication over Q(µp) it must be
over an imaginary quadratic number field Q(

√−p) contained in Q(µp) (this
could only happen for p ≡ 3 mod 4). But, by assumption, E does not have
CM by such field. By Theorem 3.3, it suffices to show that E/Q satisfies
property (Tn

S,p) for all n ≥ 0. First, let D = {d1, d2, . . .} be the set of all
primes in S which do not divide 2pNE . Then:

(1) If di, dj ∈ D then di and dj are relatively prime, for i 6= j;
(2) W (E(Q( p

√
di))) 6= W (E(Q)) for all i ≥ 1, by Corollary 6.2.

Let us fix n ≥ 0, let t = n+1 and define Di = (dt(i−1)+1, . . . , dt·i) ∈ (Q×)t

for all i ≥ 1. We claim that these Di satisfy properties (1), (2) and (3) of
Definition 3.2. For each i ≥ 1, the fields Li are defined by

Li = Q(µp, { p
√

dj : 1 ≤ j ≤ t · i})
and since all the di’s are pairwise relatively prime by construction, none of
the numbers in Ci:

Ci = {d =
t·i∏

j=1

(dj)ej : ej = 0, 1, . . . , p− 1}

can be a pth power of Q. Thus [Li : Q] = (p − 1)pt·i and [Li : Li−1] = pt.
Moreover, the d′is are only divisible by primes of S, thus Li/Q is unramified
outside S (notice that p is definitely ramified). This shows (1) and (2).

Finally, if d ∈ Ci then d is not a pth power of Q and it is relatively prime
to NE . Thus, by Corollary 6.2, W (E(Q( p

√
d))) 6= W (E(Q)). If the parity
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conjecture holds for Q( p
√

d)/Q then rankZ(E(Q( p
√

d))) > rankZ(E(Q)) and
(3) holds, which completes the proof of the theorem. ¤ ¤
Corollary 6.4. Let E/Q be an elliptic curve without wild ramification at
2 and 3, and let S be an infinite set of primes. There are infinitely many
primes p > 2 such that if the Parity Conjecture holds for extensions of degree
p and we set S′ = S ∪ {p} then the rank of E((Q(p)

S′ )
(σ)) is infinite, for all

n ≥ 0 and all (σ) ∈ Gal(Q/Q)n. In particular, rankZ(E(Q(σ))) is infinite.
Further, if there is q ∈ S such that ( q−1

2 + t) is odd, then one can pick
p = q ∈ S, where t is the number of primes of multiplicative reduction for E
which are non-squares modulo q, and so S = S′.

Proof. Let q1, . . . , qs be the primes of multiplicative reduction dividing NE ,
the conductor of E/Q. If E has CM by Q(

√−`), we will pick primes p 6= `.
One only needs to find p such that (p−1

2 + t) is odd, where t is the number
of primes q1, . . . , qs which are non-squares modulo p. Ideally, try to choose
p ∈ S such that (p−1

2 + t) is odd. If this quantity is even for all p ∈ S
then use Dirichlet’s theorem on primes in arithmetic progressions to choose
p ≡ 3 mod 4 if there are no primes of E of multiplicative reduction or if the
only prime of multiplicative reduction is 2; and p ≡ 1 mod 4

∏s
i=2 qi, with

p congruent to a non-square modulo q1 6= 2, otherwise, so that t = 1 and
(p− 1)/2 is even. ¤ ¤

7. Large Selmer Rank in Dihedral Extensions

In this section we will make use of the following deep theorem of K. Rubin
and B. Mazur in order to prove Theorem 1.5.

Theorem 7.1 ([16], Thm. B). Let p > 2 be prime. Suppose K/k is a
quadratic extension of number fields, F/K is a finite abelian extension, [F :
K] is a power of p, and F/k is dihedral (i.e. a lift of the involution of K/k
operates by conjugation on Gal(F/K) as inversion σ 7→ σ−1). Let A/k be a
polarized abelian variety defined over k with a polarization of degree prime
to p, such that F/K is unramified at all primes where A has bad reduction,
and all primes above p split in K/k. If corankZp Selp∞(A/K) is odd, then
corankZp Selp∞(A/F ) ≥ [F : K].

In order to prove Theorem 1.5 we need to show that the maximal dihedral
p-extension of a quadratic field K, with constrained ramification and fixed
by (σ), is infinite. We start by proving the analogue of Lemma 3.1 that we
will need here.

Lemma 7.2. Let k be a number field, let n ≥ 0 be an integer and (σ) ∈ Gn
k

be fixed, let t ≥ 1 be an integer, let p ≥ 2 be a prime, let K/k be an extension
of number fields, fixed by (σ), i.e. K(σ) = K. Let L1, . . . , Lt be abelian
extensions of K of degree p, let L be the compositum L1L2 · · ·Lt and suppose
[L : K] = pt. If t > n then there is at least one extension K ′/K of degree p

with K ⊂ K ′ ⊂ L ∩K
(σ).
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Proof. Let n ≥ 0 be an integer, let p ≥ 2 be prime and let L/K be as in the
statement of the lemma. By construction, L/K is Galois, G = Gal(L/K) ∼=
(Z/pZ)t and the order of G is pt. Moreover, it is clear that the order of
any element of G divides p, and similarly, if H is the subgroup generated by
elements γ1, . . . , γn ∈ G, then the order of H divides pn.

Let (σ) = (σ1, . . . , σn) ∈ Gn
k be fixed, with the property that K(σ) = K.

Thus we will regard (σ) as an element of Gal(k/K)n instead. Let γi be the
restriction of σi to L for i = 1, . . . , n. The subgroup H = 〈γ1, . . . , γn〉 is a
normal in G (because G is abelian). Thus, L(σ) = LH and the degree [LH :
K] = |G|/|H| = pt/|H|. Since the order of H divides pn, and by assumption
t > n, then pt−n divides [LH : K], and in particular p divides [LH : K].
Moreover, LH/K is Galois and abelian, and Gal(LH/K) ∼= (Z/pZ)s for
some s > 0. Hence, there is an abelian extension K ′/K of degree p, with
K ⊂ K ′ ⊂ LH = L(σ) = L ∩K

(σ), as desired. ¤ ¤
We will also need the following theorem, due to I. R. Shafarevich, to under-

stand the maximal abelian p-elementary extension of a field K, unramified
outside a finite set of primes Σ, which we will denote by Kp-elem

Σ . In the
statement of Shafarevich’s theorem we will use the following notation. For
an arbitrary field L, the symbol δp(L) is 1 or 0 as L contains or does not
contain the pth roots of unity. If F/K is a p-elementary abelian extension,
then G = Gal(F/K) is isomorphic to the direct sum of d = d(G) copies of
Z/pZ. Given a number field K, r1 is the number of real embeddings and r2

is half of the number of complex embeddings of K. Finally, the group БΣ is
defined as the quotient VΣ/K∗p where

VΣ = {α ∈ K∗|(α) = Ap, α ∈ Kp
℘ for all ℘ ∈ Σ}.

Here K℘ is the completion of K at ℘. The group БΣ is finite and, in fact,
one can show that there is an upper bound independent of Σ:

dimFp БΣ ≤ dimFp Cl(K)/Cl(K)p + δp(K)

where Cl(K) is the ideal class group of K (see [7], p. 113, for more details).

Theorem 7.3 ([7], Thm. 5.2, p. 118). Let K be a number field, let Σ be a
finite set of places of K and let p be a fixed rational prime. The dimension
of the Galois group of Kp-elem

Σ /K, regarded as a Fp-vector space, is given by:
∑

℘∈Σ, ℘|p
[K℘ : Qp]− δp(K)− r1 − r2 + 1 +

∑

ν∈Σ

δp(Kν) + dimFp БΣ.(2)

Corollary 7.4. Let p > 2 be a prime, let K be a quadratic extension of Q
and let S be an infinite set of primes of Z. Let Kp-dihe

S be the maximal p-
elementary abelian extension of K, unramified outside the primes of K lying
above primes in S, and dihedral over Q (as in the statement of Theorem 7.1).
If the set S contains infinitely many primes q which either:

(a) q remains inert in K and q ≡ −1 mod p, or
(b) q splits in K and q ≡ 1 mod p,
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then the extension Kp-dihe
S /K is infinite.

Proof. Let p, K and S be as in the statement of the theorem and let S′
be the set of all places of K lying above primes in S. Clearly, there is an
inclusion Kp-dihe

S ⊂ Kp-elem
S′ and by Theorem 7.3, the extension Kp-elem

S′ /K is
infinite if and only if the series

∑
ν∈S′ δp(Kν) diverges. Let q be a prime and

let ν be a prime ideal of K above q (so that the norm Nν = q or q2). Thus
Nν ≡ 1 mod p if and only if δp(Kν) = 1, i.e. the completion Kν contains
the pth roots of unity. In particular, if q satisfies either (a) or (b) as in the
statement, then δp(Kν) = 1. If q splits then there are two different prime
ideals ν and ν ′ such that δp(Kν) = δp(Kν′) = 1.

Suppose first that S contains infinitely many primes q satisfying (a). For
all N > 1, by Theorem 7.3, we can find a finite set of primes Σ ⊂ S such
that every q ∈ Σ is inert in K (so by a slight abuse of notation we will
consider Σ as a set of primes of K) with q ≡ −1 mod p, and such that the
dimension of the Galois group G of Kp-elem

Σ /K is d(G) > N . The fact that
the set of primes Σ is fixed by the involution of K/Q and the maximality of
Kp-elem

Σ imply that the field Kp-elem
Σ is actually Galois over Q. Moreover, fix

a d(G)-dimensional basis of G and let τ ∈ GL(d(G),Fp) be the matrix giving
the action of the involution of K/Q on Gal(Kp-elem

Σ /K). The square of the
matrix τ is the identity, hence τ is diagonalizable and the eigenvalues of τ are
±1. Let G+ and G− be the eigenspaces corresponding to the eigenvalues ±1
respectively and let L be the fixed field by G− of Kp-elem

Σ . Then the extension
L/Q is in fact Galois and abelian (because the involution acts trivially on
Gal(L/K)). If L/K was non-trivial then there would be an extension of Q
of degree p unramified outside Σ, but this is clearly impossible because all
primes of Σ are congruent to −1 mod p. Thus L/K must be trivial and
G− = G, i.e. the only eigenvalue of τ is −1 and τ is simply (−1) Id. Hence
Kp-elem

Σ /K is in fact dihedral and d(G) > N . Since N was arbitrary, the
desired conclusion follows.

Finally, suppose that S contains infinitely many primes q which split in K
and are congruent to 1 mod p. Let q be one such prime and let ν and ν ′ be
the prime ideals of K lying above q. Let OK be the ring of integers of K and
let Cl(K), Cl(K, ν) be respectively the ideal class group of K and the ray
class group of K of conductor ν. Then the following is an exact sequence:

O×K −→ (OK/ν)× −→ Cl(K, ν) −→ Cl(K) −→ 1

and there is a similar sequence for ν ′. If K is a real quadratic field, let u be
the fundamental unit in OK and let U be the set of rational primes dividing
the norm N(up − 1) (if K is quadratic imaginary then set U = ∅). Thus, if
q /∈ U ∪ {2, 3} and q ≡ 1 mod p then there exist abelian extensions Fν/K
and Fν′/K of degree p, respectively unramified outside ν and ν ′. Neither
extension is Galois over Q but the compositum FνFν′/K is Galois. Further,
the involution of K/Q permutes Fν and Fν′ and therefore the action of the
involution on Gal(FνFν′/K) must be given by a matrix with two distinct
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eigenvalues +1 and −1. In particular, there are exactly two Galois extensions
of degree p of K inside FνFν′ , namely (i) the compositum of K with the first
layer of the qth cyclotomic extension of Q and (ii) an extension F/K which
is dihedral over Q and unramified outside ν, ν ′. Since the set U ∪ {2, 3} is
finite and by assumption S contains infinitely many primes q as in (b), we
conclude that the extension Kp-dihe

S /K must be infinite. ¤ ¤
7.1. Proof of Theorem 1.5. Let E/Q be an elliptic curve and let n, (σ),
K and p > 2 be as in the statement of the theorem. Let S be an infinite set
of rational primes which does not include any of the primes of bad reduction
for E/Q, and such that S contains infinitely many primes q inert in K and
q ≡ −1 mod p, or split in K and q ≡ 1 mod p.

By Corollary 7.4 the extension Kp-dihe
S /K is infinite and by Lemma 7.2,

the extension (Kp-dihe
S )(σ)/K is infinite as well. Let N > 1 be fixed and let

F/K be a subextension of (Kp-dihe
S )(σ)/K with [F : K] = pN . By Theorem

7.1, corankZp Selp∞(E/F ) > [F : K] = pN . Since N is arbitrary, the theorem
follows.

8. An Example

Let E/Q be the curve 37A1, in J. Cremona’s notation, given by y2 + y =
x3 − x. The group of Q-rational points of E is isomorphic to Z, generated
by the point (0, 0), and its conductor is NE = 37. Thus, E/Q has a unique
bad prime and the reduction is (non-split) multiplicative. Also, whether we
assume the parity conjecture or by direct calculation, the root number is
W (E/Q) = −1. Let Q be the set of all odd primes q 6= 37 such that q ≡ 3
mod 4 and ( q

37) = 1, or q ≡ 1 mod 4 and ( q
37) = −1. The first few primes

in Q are 3, 5, 7, 11, 13, 17, 29, 47, ...
Hence, E/Q satisfies the hypotheses of (1) and (2) in Theorem 1.3. There-

fore if we assume the parity conjecture (for E over number fields) and if
n ≥ 0, S is an arbitrary infinite set of primes of Z and (σ) ∈ Gn

Q then

E
(
(Q(2)

S )(σ)
)

, E
(
(Q(q)

S′ )
(σ)

)

are of infinite rank (and finite torsion) for all q ∈ Q, where S′ = S ∪ {q}.
Further, let d 6= 0 be a fundamental discriminant such that the Kronecker

symbol ( d
−37) = −1 and choose an odd prime p 6= 37 such that p splits in

K = Q(
√

d). Then, by Lemma 4.1, the root number of Ed/Q is W (E, d) = 1
and by Theorem 5.2 the Zp-corank of Selp∞(E/Q) is odd and the Zp-corank
of Selp∞(Ed/Q) is even. By Lemma 4.2, the corank of Selp∞(E/K) is odd.
Let S be any infinite set satisfying the hypotheses of Theorem 1.5, and let
(σ) ∈ Gn

Q be an element fixing K. Then the Zp-corank of Selp∞(E/F )
is unbounded over finite extensions F/K contained in (Kp-dihe

S )(σ)/K. If
Ш(E/F )[p∞] is finite for all of these fields then the rank of

E
(
(Kp-dihe

S )(σ)
)
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is infinite.
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[9] Im, B-H., Lozano-Robledo, Á.: On products of quadratic twists and ranks of elliptic
curves over large fields, to appear.

[10] Kato, K.: p-adic Hodge theory and values of zeta functions of modular curves, Co-
homologies p-adiques et applications arithmйtiques. III. Astйrisque No. 295, ix, pp.
117-290, (2004).

[11] Kim, B-D.: The parity conjecture for elliptic curves at supersingular reduction primes,
Compositio Math. 143, pp. 47-72, (2007).

[12] Kobayashi, E.: A remark on the Mordell-Weil rank of elliptic curves over the maximal
abelian extension of the rational number field, Tokyo J. Math. Vol. 29, no. 2, (2006).

[13] Larsen, M.: Rank of elliptic curves over almost algebraically closed fields, Bull. Lon-
don Math. Soc. 35, pp. 817-820, (2003).

[14] Matsuura, R.: Root numbers of elliptic curves, Ph. D. Thesis (Boston University), in
preparation.

[15] Mazur, B.: Rational points of abelian varieties with values in towers of number fields,
Invent. Math. 18, pp. 183-266, (1972).

[16] Mazur, B., Rubin, K.: Finding large selmer rank via an arithmetic theory of local
constants, to appear in Annals of Mathematics.

[17] Merel, L.: Bornes pour la torsion des courbes elliptiques sur les corps de nombres,
Invent. Math. 124, no. 1-3, pp. 437-449, (1996).
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