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Abstract. In this note we present examples of elliptic curves and infi-
nite parametric families of pairs of integers (d, d′) such that, if we assume

the parity conjecture, we can show that Ed, Ed′ and Edd′ are all of pos-
itive even rank over Q. As an application, we show examples where a
conjecture of M. Larsen holds.

1. Introduction

Let E/Q be an elliptic curve, given by a Weierstrass equation y2 = f(x),
for some monic cubic polynomial f(x) ∈ Q[x]. Let NE be the conductor of
E/Q. The twist of E/Q by d ∈ Q×, denoted by Ed/Q, is an elliptic curve
given by dy2 = f(x). Let W (E) = W (E/Q) and W (E, d) = W (Ed/Q) be
the root numbers of E and Ed respectively. Suppose that d, d′ are funda-
mental discriminants, relatively prime to NE . Then, it is well known that:

W (E, dd′) = W (E, d)W (E, d′)W (E).(1)

Suppose further that the rank of E is even and the ranks of Ed and Ed′ are
even and positive. If we assume the parity conjecture then Eq. (1) implies
that the rank of Edd′ is also even, i.e. W (E, dd′) = 1. In light of a well-
known conjecture of Goldfeld (see [1]), it seems reasonable to believe that
the rank of Edd′ should be generically equal to zero, even under the imposed
assumptions on d and d′.

In this note we present examples of elliptic curves and infinite parametric
families of pairs of integers (d, d′) as above such that Ed, Ed′ and Edd′ are
of positive even rank over Q. As an application, we show examples where a
conjecture of M. Larsen holds for n = 2. Before we state his conjecture we
need the following piece of notation: if (σ) = (σ1, . . . , σn) ∈ Gal(Q/Q)n and
F ⊂ Q is a field then the symbol F (σ) stands for the intersection of all fixed
fields F 〈σi〉, for i = 1, . . . , n, where 〈σi〉 is the subgroup generated by σi.

Conjecture 1.1 (Larsen, [5]). Let A/Q be an abelian variety. Then the
rank of A(Q(σ))⊗Q is infinite for all n ≥ 0 and all (σ) ∈ Gal(Q/Q)n.

In fact, our results provide examples for a stronger conjecture (see [6],
Conj. 1.2), namely that rankZ(A((Qab)(σ)) ⊗ Q) is infinite (although here
we only provide examples for n = 2). Here is one such example:
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2 ÁLVARO LOZANO-ROBLEDO

Theorem 1.2. Let E/Q be the elliptic curve given by y2 = x3 − x and
define:

P1(t) = 4t7 − 8t6 − 4t5 − 4t3 + 8t2 + 4t,

P2(t) = 4t7 + 8t6 − 4t5 − 4t3 − 8t2 + 4t.

Assume that the parity conjecture holds for all rational quadratic twists of
E/Q. Then the three twists of E by di, d′i and did

′
i, for i ≥ 1, are all of

even positive rank, where the twists are explicitly given by:

di = P1(4 + 32i) and d′i = P2(4 + 32i).

Further:
(1) One can extract out of this family infinitely many triples (d, d′, dd′) ∈

Z× Z× Z, pairwise distinct in (Q∗/Q∗2)3;

(2) The rank of E((Qab)(σ)) is infinite for all (σ) ∈ Gal(Q/Q)2.

Larsen’s conjecture has been proved for n = 1 by B-H. Im and Larsen
(see [2]). In [6], the author has shown that Larsen’s conjecture holds for all
n ≥ 0 for elliptic curves over Q of odd rank and for curves without wild
ramification at 2 and 3, subject to the parity conjecture (notice that the
curve y2 = x3 − x has even rank equal to zero and wild ramification at 2,
hence it is not covered by previous results). One can use Theorems 2.4 and
3.1 to construct many other analogous examples.

Acknowledgements. I would like to thank Ravi Ramakrishna for his help
and comments, and also I thank the anonymous referee for a careful reading
and several corrections.

2. Background on Twists

In this section we provide a number of well-known results on twists of
elliptic curves, which will be used in subsequent proofs. If d ∈ Q× is a
square-free rational number, the symbol Ed stands for the quadratic twist of
the elliptic curve E/Q by d. Let NE be the conductor of E and let W (E/Q)
be the global root number (or W (E) if the field of definition is clear from
the context), i.e., the sign in the functional equation for L(E/Q, s). We will
write W (E, d) for W (Ed).

Definition 2.1. If α ∈ Q∗ and n ∈ Z+, then:
(1) α ≡ 1 mod×n means that α− 1 ∈ nZl for all primes l|n;
(2) α ≡ 1 mod×n∞ means that α ≡ 1 mod×n and α > 0.

Lemma 2.2 ([7]). Suppose E is an elliptic curve over Q, let NE be the
conductor of E/Q and let d ∈ Z be a fundamental discriminant (i.e. either
d ≡ 1 mod 4 or d = 4d′ with d′ ≡ 2, 3 mod 4, and d, d′ square-free).

(1) If gcd(NE , d) = 1 then W (E, d) =
(

d
−NE

)
·W (E) where

( ·
·
)

is the
Kronecker symbol.
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(2) If d, d′ are fundamental discriminants, relatively prime to NE and
to each other, then W (E, dd′) = W (E, d) ·W (E, d′) ·W (E).

(3) ([8], Lemma 4.3) Suppose c, c′ are non-zero rational numbers such
that there exists β ∈ Q∗ such that β2c/c′ ≡ 1 mod×8NE∞. Then
W (E, c) = W (E, c′).

Lemma 2.3 ([10], X.§5). Let d ∈ Q× be a square free integer and let E/Q
be an elliptic curve. Then:

rankZ(E(Q(
√

d)) = rankZ(E(Q)) + rankZ(Ed(Q)).

The following result is shown in [3]. Although we will not use it here, it
provides examples for which the main hypothesis of Theorem 3.1 is satisfied:

Theorem 2.4 ([3], Corollary 4.4). Let K be a number field and let E/K be
an elliptic curve satisfying one of the following:

(1) All 2-torsion points are K-rational;
(2) E/K has a Weierstrass equation of the form y2 = x3 + ax2 + c2x,

for some a, c ∈ K;
(3) E/K has a Weierstrass equation of the form y2 = x(x2 − k), with

1 + k = e2 + f2, for some k, e, f ∈ K.
(4) E/K is K-isogenous to an elliptic curve as in (1), (2) or (3) above.

Then there exist explicit polynomials P1 and P2 in K[t] such that P1, P2 and
P1P2 are not in K · (K[t])2 and the twists EP1(t), EP2(t), EP1P2(t) are of
positive rank over K(t).

3. Product of twists

The main theorem of this section is:

Theorem 3.1. Let E/Q be an elliptic curve and suppose there exist polyno-
mials P1 and P2 in Q[t] such that P1, P2 and P1P2 are not in Q · (Q[t])2 and
the twists EP1(t), EP2(t), EP1P2(t) are of positive rank over Q(t). Further,
suppose that there is a value t0 ∈ Q such that EP1(t0), EP2(t0), EP1P2(t0)

are of positive even rank over Q and assume the parity conjecture for all
quadratic twists of E/Q. Then there are infinitely many triples (d, d′, dd′) ∈
Q×Q×Q, pairwise distinct in (Q∗/Q∗2)3, such that the twists Ed, Ed′ and
Edd′ are all of positive even rank over Q.

In the proof of Theorem 3.1 we will make use of a number of lemmas. The
first lemma appears in [5, Lemma 4]. Here we state a stronger statement
which follows from the proof presented in [5].

Lemma 3.2. Let F be a number field and P1(t), P2(t), . . ., Pn+1(t) a se-
quence of polynomials in F [t] each of which has a zero (over F ) of odd
multiplicity. If L/F is a finite separable extension of F , then the set of all
a ∈ F such that Pi(a) is not a perfect square in L, for i = 1, . . . , n + 1, is a
Hilbert set of F and therefore infinite.
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For a definition of a Hilbert set, a Hilbertian field and for a proof of the
fact that number fields are Hilbertian, see [4, Chapter 9] or [9, Chapter 3].

The following result is an extension of Corollary 2.5 of [4]:

Lemma 3.3. A Hilbert set H of Q is dense for the ordinary topology and
every p-adic topology on Q. Moreover, if S is a finite set of primes of Z and
Up are open sets of Q for the p-adic topology, then H ∩ (

⋂
p∈S Up) is infinite.

Proof. The first statement is [4, Corollary 2.5]. For the second statement,
put N =

∏
p∈S p. If f(t,X) is irreducible over Q(t) and a ∈ ⋂

p∈S Up, then
so is f(a + tNν , X) for large ν. ¤

Also, the reader should recall Silverman’s specialization theorem (see [11,
p. 271, Theorem 11.4]): if Et/K(t) is a non-split elliptic curve defined over
K(t) then for all but finitely many t0 ∈ K the rank of the specialization
Et0/K is at least that of Et/K(t) (there is also a specialization theorem
for split surfaces due to Dem’janenko and Manin). It is easy to see that if
h(t) ∈ K[t] is a polynomial not in K · (K[t])2 then the twist Eh(t)/K(t) is
non-split, for any elliptic curve E/K (see [3], Lemma 2.2, for a proof). The
last lemma we need is this technical result:

Lemma 3.4. Let P = {P1(t), P2(t), · · · , Pk(t)} be a finite set of non-zero
polynomials in Q[t], let N > 0 be an integer, let t0 be a fixed rational number
which is not a root of any polynomial in P and define

T = {s ∈ Q :
Pi(s)
Pi(t0)

≡ 1 mod ×N∞ for all 1 ≤ i ≤ k}.

Then there are non-empty open sets V∞ of R and Vp of Qp, for every p divid-
ing N , such that if we let Uν = Vν ∩Q then set T contains their intersection⋂

Uν . In particular, T is infinite.

Proof. Let 1 ≤ i ≤ k be fixed. There is a non-empty open neighborhood V i∞
of t0 in the usual topology of Q such that if s ∈ V i∞ then Pi(s) and Pi(t0)
have the same sign and Pi(s)/Pi(t0) > 0. Let p be a prime dividing N and
let Qp be the completion of Q at p. Similarly, there is a non-empty open
neighborhood V i

p of t0 in Qp such that if s ∈ V i
p then Pi(s)/Pi(t0) − 1 ∈

NZp. Put Vν =
⋂k

i=1 V i
ν , for any ν dividing N∞. Since each set Vν is an

intersection of a finite number of non-empty open neighborhoods of a fixed
t0 ∈ Q, it follows that each Vν is also a non-empty open neighborhood of
t0. The intersection Uν = Vν ∩ Q forms an open subset of Q in the ν-adic
topology. By Lemma 3.3 and since there are only finitely many places of Q
which divide N∞, any Hilbert set of Q has infinite intersection with

⋂
Uν

and, in particular, Q ∩ (
⋂

Uν) =
⋂

Uν is infinite. Since the set T contains⋂
Uν we conclude that T is infinite. ¤

Now we are ready to prove Theorem 3.1.
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3.1. Proof of Theorem 3.1. Let E/Q is an elliptic curve and suppose
there exist t0 ∈ Q and polynomials P1 and P2 in Q[t] such that P1, P2

and P3 := P1P2 are not in Q · (Q[t])2 and the twists EPi(t) are of positive
rank over Q(t), and EPi(t0) are of positive rank over Q, for i = 1, 2, 3. Put
d0 = P1(t0), d′0 = P2(t0) and define:

T = {s ∈ Q :
Pi(s)
Pi(t0)

≡ 1 mod ×8NE∞ for all i = 1, 2, 3}.

By Lemma 3.4, for every place ν dividing 8NE∞ there are non-empty open
neighborhoods Uν of t0 such that the set T contains

⋂
Uν and therefore T

is infinite.
We will use induction to recursively construct triples Dj = (dj , d

′
j , djd

′
j),

for all j ≥ 0, satisfying the required properties. Put D0 = (d0, d
′
0, d0d

′
0)

and suppose that we have chosen D1, . . . , Dn ∈ Q3, pairwise distinct in
(Q∗/Q∗2)3, such that the twists Edj , Ed′j and Edjd′j are all of positive even
rank over Q, for all j = 0, . . . , n. Define a finite (separable) extension of Q
by:

L = Q
(
{
√

dj ,
√

d′j : j = 0, 1, . . . , n}
)

.

By Lemma 3.2, the set H of rational numbers s such that Pi(s) is not a
square in L, for i = 1, 2, 3, is a Hilbert set of Q (notice that the fact that
P1, P2, P1P2 are not in Q · (Q[t])2 implies that they all have a zero of odd
order). Combining Lemma 3.3 with 3.4, we can conclude that H ∩ T is
infinite. By Silverman’s specialization theorem, since EPi(t) are of positive
rank over Q(t), there is a finite set S ∈ Q such that if s /∈ S then EPi(s) is
of positive rank over Q, for i = 1, 2, 3.

Let s ∈ H ∩ T , with s /∈ S, and put dn+1 = P1(s), d′n+1 = P2(s) and
dn+1d

′
n+1 = P3(s) = P1P2(s). By construction, d = dn+1, d′ = d′n+1 and

dd′ = dn+1d
′
n+1 are not squares in L, thus they are distinct in Q×/Q×2

to any of dj , d
′
j , djd

′
j , for 0 ≤ j ≤ n. Furthermore, the fact that s ∈ T

implies that Pi(s)/Pi(t0) ≡ 1 mod ×8NE∞ and so, if we assume the parity
conjecture, Lemma 2.2 implies

W (E, d) = W (E, d0) = +1, W (E, d′) = W (E, d′0) = +1,

W (E, dd′) = W (E, d0d
′
0) = +1.

Thus, again by the parity conjecture, Ed, Ed′ and Edd′ are of even rank.
Moreover, since we chose s /∈ S, the rank of the mentioned twists is positive,
as desired. This concludes the proof of the Theorem.

4. On a conjecture of Larsen

In this section we explain how Theorem 3.1 can be used to provide exam-
ples where Conjecture 1.1 holds for n = 2.
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Definition 4.1 (cf. [6], Defn. 3.2). We say that an elliptic curve E/Q
satisfies property (An) if for all i ≥ 1 there exist Di = (di,1, . . . , di,n+1) ∈
(Q×)n+1 such that:

(A1) Put L0 = Q and define Li = Li−1({
√

di,j : j = 1, . . . , n + 1}) for all
i ≥ 1. Then [Li : Li−1] = 2n+1;

(A2) For all i ≥ 1 and d ∈ Q× of the form

d =
n+1∏

j=1

(di,j)ej with ej = 0, 1

the rank of E(Q(
√

d)) is strictly greater than that of E(Q).

As before, the symbol Qab is the maximal abelian extension of Q and Q(2)

is the compositum of all quadratic extensions of Q.

Proposition 4.2. Let E/Q be an elliptic curve satisfying the property (A2).
Then for each (σ) = (σ1, σ2) ∈ Gal(Q/Q)2, the rank of A((Q(2))(σ)) is
infinite.

Proof. This is a special case of Theorem 3.1 in [6], for n = 2 and when the
set S contains all primes. ¤
Theorem 4.3. Let E/Q be an elliptic curve and suppose the following hy-
potheses hold:

(1) There exist polynomials P1 and P2 in Q[t] such that P1, P2 and P1P2

are not in Q · (Q[t])2 and the twists EP1(t), EP2(t), EP1P2(t) are of
positive rank over Q(t);

(2) The parity conjecture holds for all quadratic twists of E/Q;
(3) There is a value t0 ∈ Q such that EP1(t0), EP2(t0), EP1P2(t0) are

of positive rank over Q (note that the existence of such a value t0
follows from (1) and Silverman’s specialization theorem);

(4) There is a d ∈ Q× such that d, dP1(t0), dP2(t0) and dP1(t0)P2(t0)
are not perfect squares and

W (E, d) = W (E, dP1(t0)) = W (E, dP2(t0)) = W (E, dP1(t0)P2(t0)) = −1.

Then E/Q satisfies property (A2). Consequently, for each (σ) = (σ1, σ2) ∈
Gal(Q/Q)2, the rank of A((Q(2))(σ)) is infinite.

Proof. Let E/Q, P1, P2, P1P2(= P3), t0 ∈ Q and d be as in the statement of
the theorem. Let P be the infinite set of primes congruent to 1 mod 8NE

(of course, the fact that P is infinite may be proven using Dirichlet’s theorem
on primes in arithmetic progressions) and define a set:

T = {s ∈ Q :
Pi(s)
Pi(t0)

≡ 1 mod ×8NE∞ for i = 1, 2, 3}.

By Lemma 3.4, for every place ν dividing 8NE∞ there are non-empty open
neighborhoods Uν of t0 such that the set T contains

⋂
Uν and therefore T is

infinite. By Silverman’s specialization theorem, since EPi(t) are of positive
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rank over Q(t), there is a finite set S ∈ Q such that if s /∈ S then EPi(s) is
of positive rank over Q, for i = 1, 2, 3.

We will define integers di,j , for j = 1, 2, 3 and i ≥ 1, and Di = (di,1, di,2, di,3)
recursively, so that the triples Di satisfy conditions (A1) and (A2) of Def-
inition 4.1. We put d1,1 = P1(t0) and d1,2 = P2(t0). Also put d1,3 = d.
Then, by the hypotheses in the theorem and the parity conjecture, the
triple D1 = (d1,1, d1,2, d1,3) satisfies properties (A1) and (A2). Suppose
D1, . . . , Dm have been chosen so that (A1) and (A2) are verified. In partic-
ular, by (A1), none of the numbers of the form:

c =
3∏

j=1

m∏

i=1

(di,j)ei,j with ei,j = 0, 1(2)

are squares of Q (otherwise Lm/Q would not be of degree 23m as it should
be).

Define a finite (separable) extension L/Q by:

L = Q
(
{
√

di,1,
√

di,2,
√

di,3 : i = 1, . . . ,m}
)

.

By Lemma 3.2, the set H of rational numbers s such that Pi(s) is not a
square in L, for i = 1, 2, 3, is a Hilbert set of Q. Combining Lemma 3.3 with
3.4, we can conclude that H ∩ (T \S) is infinite. Let tm+1 ∈ H ∩ (T \S) and
define dm+1,1 = P1(tm+1) and dm+1,2 = P2(tm+1). Thus, by construction,
L′ = L(

√
dm+1,1,

√
dm+1,2) is a biquadratic extension of L. Let pm+1 be

a prime of the set P , so that pm+1 = 1 + 8NEs for some integer s ≥ 1,
such that pm+1 is relatively prime to all coordinates of Di, for 1 ≤ i ≤ m,
and relatively prime to dm+1,j for j = 1, 2. Define dm+1,3 = dpm+1 and let
c ∈ Q× be a number of the form:

c =
3∏

j=1

m+1∏

i=1

(di,j)ei,j with ei,j = 0, 1.(3)

If c is already listed in Eq. (2) then c /∈ Q×2, by (A1) as explained before.
Otherwise, em+1,j = 1 for j = 1, 2 or 3. If em+1,j = 1 for j = 1 or 2,
since L′/L is biquadratic, then c /∈ Q×2. Finally, if em+1,3 = 1 then pn+1

divides c but p2
n+1 does not divide c. Thus c is not a square of Q and, hence,

[Lm+1 : Q] = 23(m+1) and [Lm+1 : Lm] = 23. This shows that the triples Di

for 1 ≤ 1 ≤ m + 1 satisfy (A1).
It remains to show that Dm+1 satisfies (A2). To this end, we need to

check that rankZ(E(Q(
√

c)) > rankZ(E(Q)) for any integer c in the list:

dm+1,1 = P1(tm+1), dm+1,2 = P2(tm+1), (dm+1,1)(dm+1,2),(4)
dpm+1, (dm+1,1)dpm+1, (dm+1,2)dpm+1, (dm+1,1)(dm+1,2)dpm+1.(5)

If c is one of the values in Eq. (4) then rankZ(E(Q(
√

c)) > rankZ(E(Q))
because tm+1 ∈ H ∩ (T \ S) and Lemma 2.3. Let c = (dm+1,1)dpm+1 (the
proof is the same for the rest of the values in Eq. (5)). Since (dm+1,1)/d1 ≡ 1
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mod ×8NE∞ and pm+1 ≡ 1 mod 8NE , it follows that (dm+1,1)dpm+1/d1d ≡
1 mod ×8NE∞. By Lemma 2.2:

W (E, c) = W (E, (dm+1,1)dpm+1) = W (E, (d1,1)d) = W (E, P1(t0)d) = −1.

Thus, by the parity conjecture, Ec/Q is of positive rank and the rank of
E(Q(

√
c)) is greater than rankZ(E(Q)). This finishes the proof of the theo-

rem. ¤

5. An explicit example

In this final section we provide a proof of Theorem 1.2, i.e. we show an
explicit elliptic curve which exemplifies how the theory we developed can be
used. If a, b are non-zero elements of a field F , the notation a ∼ b means
that [a] = [b] ∈ F×/F×2.

Let E/Q be the elliptic curve E : y2 = x3 − x and put f(x) = x3 − x.
The group of rational points E(Q) is finite of order 4. The curve E/Q has
complex multiplication and rank 0, so in this case by the work of Kolyvagin-
Rubin-Zagier (or by direct computation!), we know that the sign in the
functional equation of L(E/Q, s) is W (E/Q) = 1. The conductor of E is
NE = 32.

The construction of [3], Proposition 3.8, yields the following polynomials
P1 and P2. Put:

g1(x) = x2 − 2x− 1, g2(x) = −x2 − 2x + 1, h(x) = x2 + 1

and

P1(x) = h(x)g1(x)(h(x)2 − g1(x)2) = 4x7 − 8x6 − 4x5 − 4x3 + 8x2 + 4x,

P2(x) = h(x)g2(x)(h(x)2 − g2(x)2) = 4x7 + 8x6 − 4x5 − 4x3 − 8x2 + 4x,

P3(x) = P1(x)P2(x).

The elliptic surfaces EP1(t), EP2(t) and EP3(t) are of positive rank over Q(t)
(the reason is that, P1(t) ∼ f(g1(t)

h(t) ) modulo squares, P2(t) ∼ f(g2(t)
h(t) ) and

P3(t) ∼ f(g1(t)g2(t)
h(t)2

)).
Now, let t0 = 4 and calculate:

P1(4) = 28560 ∼ 1785, P2(4) = 93840 ∼ 5865, P1P2(4) ∼ 161.

The numbers 1785, 5865, 161 are all ≡ 1 mod 4 and squarefree, and so they
are fundamental discriminants. Thus, by Lemma 2.2, and after calculating
some Kronecker symbols, one obtains:

W (E, 1785) = W (E, 5865) = W (E, 161) = 1.

In fact, a quick calculation with the software MAGMA reveals that the ranks
of E1785, E5865 and E161 are equal to 2. Hence, the hypotheses of Theorem
3.1 are satisfied and there exist infinitely many triples (d, d′, dd′) ∈ Q×Q×Q,
pairwise distinct in (Q∗/Q∗2)3, such that the twists Ed, Ed′ and Edd′ are all
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of positive even rank over Q. In fact, by making the proof explicit, one can
pick d, d′ among the infinite family:

di = P1(4 + 32i) and d′i = P2(4 + 32i) for all i ≥ 1.

Finally, let d > 0 be a fundamental discriminant (with d ∈ Z square-free,
d ≡ 1 mod 4) such that the Kronecker symbol

(
d
−32

)
= −1, for example,

pick d = 5. Then, by Lemma 2.2:

W (E, 5) = W (E, 1785 · 5) = W (E, 5865 · 5) = W (E, 161 · 5) = −1.

Hence, by Theorem 4.3 and if the parity conjecture holds for quadratic twists
of E, the rank of E((Qab)(σ)) is infinite, for all (σ) ∈ Gal(Q/Q)2.
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