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Abstract. Let SQ(d) be the set of primes p for which there exists a number field K of degree ≤ d
and an elliptic curve E/Q, such that the order of the torsion subgroup of E(K) is divisible by p. In
this article we give bounds for the primes in the set SQ(d). In particular, we show that, if p ≥ 11,
p 6= 13, 37, and p ∈ SQ(d), then p ≤ 2d + 1. Moreover, we determine SQ(d) for all d ≤ 42, and give
a conjectural formula for all d ≥ 1. If Serre’s uniformity problem is answered positively, then our
conjectural formula is valid for all sufficiently large d. Under further assumptions on the non-cuspidal
points on modular curves that parametrize those j-invariants associated to Cartan subgroups, the
formula is valid for all d ≥ 1.

1. Introduction

Let K be a number field of degree d ≥ 1 and let E/K be an elliptic curve. The Mordell-Weil
theorem states that E(K), the set of K-rational points on E, can be given the structure of a finitely
generated abelian group. Thus, there is an integer R ≥ 0 such that E(K) ∼= E(K)tors ⊕ ZR and the
torsion subgroup E(K)tors is finite. Here, we will focus on the order of E(K)tors. In particular, we
are interested in the following question: if we fix d ≥ 1, what are the possible prime divisors of the
order of E(K)tors, for E and K as above?

Definition 1.1. We define S(d) as the set of primes p for which there exists a number field K of
degree ≤ d and an elliptic curve E/K such that |E(K)tors| is divisible by p. We also define Φ(d) as
the set of all possible isomorphism types for E(K)tors, over all K and E as above.

The following list represents some highlights (in chronological order) of what is known about the
sets S(d) and Φ(d):

• (Mazur, [33]) S(1) = {2, 3, 5, 7} and Φ(1) is determined, with 15 types.
• (Kamienny, Mazur, [21]; see also [11]) S(2) = {2, 3, 5, 7, 11, 13} and Φ(2) has 26 types.
• (Faltings, Frey, [16], [17]) If S(d) is finite, then Φ(d) is finite.
• (Merel, [36]) For all d ≥ 1, the set S(d) is always finite; thus, Φ(d) is also finite. Moreover,
if d > 1 and p ∈ S(d), then p ≤ d3d2 .
• (Osterlé, unpublished work but mentioned in [36]) If p ∈ S(d), then p ≤ (3d/2 + 1)2.
• (Parent, [39]) S(3) = {2, 3, 5, 7, 11, 13}.

In addition, Derickx, Kamienny, Stein, and Stoll ([9]) have recently shown using a computational
method that S(4) = S(3) ∪ {17}, S(5) = S(4) ∪ {19}, and S(6) ⊆ S(5) ∪ {37, 73}.

In this article, we restrict our study to the simpler case of elliptic curves E/K that arise from
elliptic curves defined over Q whose base field has been extended to K.
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Definition 1.2. Let SQ(d) be the set of primes p for which there exists a number field K of degree
≤ d and an elliptic curve E/Q, such that |E(K)tors| is divisible by p.

Clearly SQ(d) ⊆ S(d) and SQ(1) = S(1) but, as we shall see, SQ(2) = S(1) ( S(2). Our first
theorem provides an upper bound for the primes in SQ(d).

Theorem 1.3. Let p ≥ 11 with p 6= 13 or 37, and such that p ∈ SQ(d). Then p ≤ 2d+ 1.

In order to show Theorem 1.3, we will prove the following. Let E/Q be an elliptic curve and p ≥ 11
be a prime, other than 13. Let K be a number field of degree d ≥ 1 such that |E(K)tors| is divisible
by p. Then d ≥ (p− 1)/2 unless j(E) = −7 · 113 and p = 37, in which case d ≥ (p− 1)/3 = 12. We
will also show that 13 ∈ SQ(3) and 37 ∈ SQ(12).

The bounds of Theorem 1.3, together with the refined bounds of Theorem 2.1 below, will allow
us to determine SQ(d) for small values of d. We will also provide a conjectural formula for SQ(d). If
a question of Serre is answered positively, then our formula holds for all sufficiently large d. Under
further assumptions, the formula holds for all d ≥ 1.

Let ρE,p : Gal(Q/Q) → GL(E[p]) be the representation induced by the action of Galois on E[p].
In [43] §4.3, Serre asked whether there is a constant N , that does not depend on E, and such that
ρE,p is surjective for all elliptic curves E/Q without CM, and for all p > N . Serre actually asks
whether N = 37 works. This question, usually known as “Serre’s uniformity problem”, has generated
great interest (see [2], [6], [7], [27], [32], [40]). It has been solved by Mazur in the Borel case ([33]),
by Serre in the exceptional case ([46]) and by Bilu and Parent in the split Cartan case ([2]). Only
the non-split Cartan case remains to be solved. For more details on this topic, see the introduction
of [2], or [35], §2.

Theorem 1.4. Let d ≥ 1 and define sets of primes A = {2, 3, 5, 7}∪{13, if d ≥ 3}∪{37, if d ≥ 12},
and sets B, C, D, F by:

B = {primes p = 11, 17, 19, 43, 67, or 163 and such that p ≤ 2d+ 1},
C = {primes p such that p ≤

√
d+ 1}, D = {primes p such that p ≤ d+ 1}

and let F be the set of all primes 11 ≤ p ≤ d/2 + 1 such that there is a quadratic imaginary field of
class number 1 in which p splits. Then:

(1) A ∪B ∪ C ∪ F ⊆ SQ(d) ⊆ A ∪B ∪D, and
(2) Suppose that there is a constant M ≥ 11 such that, for all primes p > M either E/Q is CM,

or ρE,p is surjective, or its image is a Borel. Then A∪B∪C∪F = SQ(d) for all d ≥M2−1.

We note that, if d ≤ 21 and p ∈ SQ(d)∩D, then p ∈ A∪B. It follows that SQ(d) = A∪B∪C ∪F
for all d ≤ 21. This allows us to give an explicit description of SQ(d) for d ≤ 21.

Corollary 1.5. Let SQ(d) be the set of Definition 1.2.
• SQ(d) = {2, 3, 5, 7} for d = 1 and 2;
• SQ(d) = {2, 3, 5, 7, 13} for d = 3 and 4;
• SQ(d) = {2, 3, 5, 7, 11, 13} for d = 5, 6, and 7;
• SQ(d) = {2, 3, 5, 7, 11, 13, 17} for d = 8;
• SQ(d) = {2, 3, 5, 7, 11, 13, 17, 19} for d = 9, 10, and 11;
• SQ(d) = {2, 3, 5, 7, 11, 13, 17, 19, 37} for 12 ≤ d ≤ 20.
• SQ(d) = {2, 3, 5, 7, 11, 13, 17, 19, 37, 43} for d = 21.
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Question 1.6. Does the formula for SQ(d) = A ∪B ∪ C ∪ F hold for all d ≥ 1?

The answer to this question, as well as Serre’s uniformity problem, hinges in a deeper understand-
ing of non-cuspidal points on the modular curves that classify those elliptic curves whose representa-
tions ρE,p have an image contained in the normalizer of a split or non-split Cartan subgroup. In the
following theorem we show that recent work of Bilu, Parent and Rebolledo, and further assumptions
on the Cartan cases imply better bounds, or even a positive answer to Question 1.6.

Theorem 1.7. Let d ≥ 1 be fixed, let A,B,C, F be the sets of primes defined above, and let F ′ be
the set of all primes p ≤ d/2 + 1. Then

A ∪B ∪ C ∪ F ⊆ SQ(d) ⊆ A ∪B ∪ F ′.

Moreover, suppose that the following hypothesis is verified for all primes 13 < p < d/2 + 1 that do
not belong to A ∪B:

(H) If E/Q is an elliptic curve such that the image of ρE,p is contained in a normalizer of a
non-split Cartan subgroup, then the image is either a full non-split Cartan subgroup or its
normalizer.

Then, A ∪B ∪ C ∪ F = SQ(d).

Remark 1.8. Theorem 1.7 relies on recent progress towards Serre’s uniformity problem. Let p be
a prime and let (H ′) be the following condition for p:
(H ′) If E/Q is an elliptic curve such that the image of ρE,p is contained in a normalizer of a split

Cartan subgroup, then the curve E/Q has CM by a quadratic imaginary field K and p splits
in K/Q.

Here is a brief history of the recent developments on our understanding of hypothesis (H ′). Rebolledo
showed in her thesis ([42], a corollary of Thm. (0.12)) that hypothesis (H ′) holds for all 13 < p < 1873
(see also the work of Momose [37]). As part of his thesis, Daniels [8] has shown that (H ′) holds for
p = 11. Furthermore, in their groundbreaking paper [2], Bilu and Parent have shown that there is
a constant N such that (H ′) holds for all p ≥ N . Finally, building on [2] and some recent work of
Gaudron and Rémond [14], the collaborators Bilu, Parent and Rebolledo [3] have shown that (H ′)
holds for all p ≥ 11 except for p = 13. If Serre’s uniformity problem is answered positively in the
non-split case for all p > 13, this would imply condition (H), by Theorem 7.6.

Corollary 1.9. The formula SQ(d) = A ∪B ∪ C ∪ F is valid for all 1 ≤ d ≤ 42.

The proof of Theorem 1.3 will be summarized in Section 2 and completed in Sections 3 through
9. The proofs of Theorems 1.4, 1.7, and Corollary 1.9 will be given in Section 2. Our results rest
on the work of Serre ([43]; see Section 3) and the classification of non-cuspidal rational point on
the modular curves X0(N). For the convenience of the reader, we have collected all non-cuspidal
Q-points on X0(N), for all N ≥ 1, in Tables 3 and 4 of Subsection 9.1.

2. Refined Bounds

In this section we discuss bounds for the field of definition of a p-torsion point on an elliptic curve
E/Q. The proof of Theorem 2.1 also serves as a table of contents for the organization of the rest of
the paper.
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Theorem 2.1. Let E/Q be an elliptic curve and let p ≥ 11 be a prime, other than 13. Let R ∈ E[p]
be a torsion point of exact order p and let Q(R) = Q(x(P ), y(P )) be the field of definition of R. Then

[Q(R) : Q] ≥ p− 1

2

unless j(E) = −7 · 113 and p = 37, in which case [Q(R) : Q] ≥ (p − 1)/3 = 12. More concretely,
suppose j(E) 6= −7 · 113:

(1) If the image of ρE,p, with respect to an Fp-basis {P,Q} of E[p], is a Borel subgroup of
GL(2,Fp), then p = 11, 17, 19, 37, 43, 67 or 163. Moreover, if R ∈ 〈P 〉, then Q(R)/Q is
Galois, cyclic and [Q(R) : Q] = (p− 1)/2 or (p− 1). Otherwise, [Q(R) : Q] ≥ p.

(2) If the image of ρE,p is not a Borel (in any basis), then [Q(R) : Q] ≥ p− 1.

Proof. Let E, p ≥ 11 but p 6= 13, and ρE,p be as in the statement of the theorem, and let R be
an arbitrary torsion point in E(Q) of exact order p. Let G be the image of ρE,p in GL(E[p]). By
the work of Serre (see Section 3), either G is all of GL(2,Fp), or it is contained in one of 4 types of
maximal subgroups (Theorem 3.2), so we break the proof into 5 cases:

(1) If G = GL(E[p]), then [Q(R) : Q] = p2 − 1 by Theorem 5.1;
(2) If G is contained in a split Cartan subgroup of GL(E[p]), then p ≤ 5 by Theorem 6.2. If G

is contained in the normalizer of a split Cartan, then [Q(R) : Q] ≥ p− 1 by Theorem 6.5;
(3) If G is contained in the normalizer of a non-split Cartan subgroup, then [Q(R) : Q] ≥ 2(p−1)

by Theorem 7.3;
(4) If the projective image of G in PGL(E[p]), call it G, is isomorphic to A4, S4 or A5, then

p ≤ 13 and G ∼= S4, by Theorem 8.1. Moreover, if p = 11 then [Q(R) : Q] ≥ 60 > 10 = p− 1
by Theorem 8.3;

(5) Finally, if the image of ρE,p, with respect to an Fp-basis {P,Q} of E[p], is a Borel subgroup
of GL(2,Fp), then p = 11, 17, 19, 37, 43, 67 or 163 by the classification of all non-cuspidal Q-
points on the modular curves X0(N), when N is prime (see Subsection 9.1 and, in particular,
Table 4). The results on [Q(R) : Q] are shown in Theorems 9.3 and 9.4.

Thus, the proof of Theorem 2.1 is complete. �

Theorem 1.3 is an immediate consequence of Theorem 2.1. We can also deduce Theorem 1.4.

Proof of Theorem 1.4. Let us begin by discussing the cases of p = 13 and p = 37. The prime
13 ∈ SQ(d) if and only if d ≥ 3. Indeed, by the work of Laska, Lorenz, and Fujita, 13 /∈ SQ(2) = S(1),
but as the following example (due to Elkies) demonstrates, 13 belongs to SQ(3): let E be the elliptic
curve defined by y2 + y = x3 + x2− 114x+ 473. Then E has a torsion point of order 13 defined over
K/Q, a cubic Galois extension, where K = Q(α) and α3 − 48α2 + 425α− 1009 = 0. A point P ∈ E
of order 13 is (α, 7α− 39).

By Theorem 2.1, if p = 37 belongs to SQ(d), then d ≥ 12. Moreover, 37 ∈ SQ(12). Indeed, the
elliptic curve y2 + xy + y = x3 + x2 − 8x + 6 has a point of order 37 defined over the number field
of degree 12 over Q (see the proof of Theorem 9.4 for more details).

Now we can show that SQ(d) ⊆ A∪B ∪D. Suppose p ∈ SQ(d) \A and let K be a number field of
degree d and E/Q an elliptic curve with |E(K)tors| divisible by p. By Theorem 2.1, if the image of
ρE,p is a Borel (and p /∈ A), then p = 11, 17, 19, 43, 67 or 163 and d ≥ (p− 1)/2. Thus, p ≤ 2d+ 1
and p ∈ B. If the image of ρE,p is not a Borel, then d ≥ p− 1, so p ∈ D. Hence, SQ(d) ⊆ A∪B ∪D.
This shows the containment of SQ(d) in (1).
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We know that SQ(1) = S(1), which was determined by Mazur, [33]. The fact that SQ(2) = S(1)
follows from a theorem of Laska, Lorenz and Fujita (see [19]). Together with the facts about p = 13
and 37, this shows A ⊆ SQ(d).

By Theorem 2.1, if p = 17 belongs to SQ(d), then d ≥ 8. The following example shows that
17 ∈ SQ(8). The elliptic curve y2 + xy = x3 + x2 − 660x − 7600 with j = −17 · 3733/217 has a
17-torsion point defined over Q(α) where α is a root of

x8 − 30x7 + 23620x6 − 694800x5 + 174568000x4 − 3730176000x3

+472522624000x2 − 5238622720000x+ 343420835840000 = 0.

Moreover, for each p = 11, 19, 43, 67, or 163, there is an elliptic curve E/Q with CM by Q(
√
−p)

and a non-trivial point P ∈ E[p] such that [Q(P ) : Q] = (p − 1)/2 (this will be shown below in
Corollary 9.8). Hence, if p ∈ B, then p ∈ SQ(d). We have shown that A ∪B ⊆ SQ(d).

Let E/Q be an elliptic curve with CM by an order O in a quadratic imaginary field K and
p ≥ 11. By Theorem 7.6, there is a non-trivial point R′ ∈ E[p] such that, if p splits in K/Q,
then [Q(R′) : Q] = 2(p − 1). In particular, if d ≥ 2(p − 1), or equivalently, if p ≤ d/2 + 1, then
p ∈ SQ(d). This shows that F ⊂ SQ(d). Moreover, if p is inert, then [Q(R′) : Q] = p2 − 1. For any
7 ≤ p ≤

√
d+ 1 (i.e., p2− 1 ≤ d), one can find an elliptic curve E/Q with CM by K and such that p

is unramified in K/Q (notice that either E with CM by Q(
√
−7) or E with CM by Q(

√
−11) must

work). Whether p splits or remains inert in K, in both cases we have [Q(R′) : Q] ≤ p2 − 1 ≤ d and,
hence, p ∈ SQ(d). This shows that C ⊆ SQ(d). This concludes the proof of (1).

To show (2), let us assume there is a constant M ≥ 11 as in the statement of the theorem, assume
that d ≥M2− 1 and let p ∈ SQ(d) \A∪B. Let E/Q be an elliptic curve with a non-trivial p-torsion
point R defined in an extension of degree ≤ d. If p ≤ M , then p2 − 1 ≤ M2 − 1 ≤ d and therefore
p ∈ C. If p > M ≥ 11 and p 6∈ A ∪ B, then ρE,p is either surjective, in which case by Theorem 5.1
we have that [Q(R) : Q] = p2 − 1 ≤ d and p ∈ C, or E/Q has CM by a quadratic imaginary field K
and p is unramified in K (if it was ramified, then ρE,p would be in a Borel). By Theorem 7.6, if p is
inert in K/Q then p ∈ C and, if p splits, then p ∈ F . This shows that SQ(d) ⊆ A ∪ B ∪ C ∪ F and
concludes the proof of the theorem. �

Next, we shall prove Theorem 1.7.

Proof of Theorem 1.7. Let d ≥ 1 be fixed. By Theorem 1.4 we know that A∪B ∪C ∪F ⊆ SQ(d) ⊆
A ∪ B ∪ D. By Corollary 1.5 we may assume that d ≥ 22. Let p ∈ SQ(d) with p 6∈ A ∪ B. In
particular, p > 13. We shall show that p ∈ F ′. Let E/Q be an elliptic curve with a non-trivial
p-torsion point R defined in an extension of degree ≤ d and let G be the image of ρE,p. By Serre’s
classification of maximal subgroups of GL(E[p]), as in Section 3, here are the only possibilities:

(1) If ρE,p is surjective, i.e., G = GL(E[p]), then d ≥ [Q(R) : Q] = p2 − 1 by Theorem 5.1, thus
p ∈ C ⊆ F ′;

(2) If G is an exceptional subgroup, then p ≤ 13 (by Theorem 8.1). If G is a Borel subgroup,
then p ∈ B as we have seen above (and in Subsection 9.1). Since we have assumed that
p 6∈ A ∪B, these cases cannot occur;

(3) Suppose G is contained in C+sp, the normalizer of a split Cartan subgroup Csp. Recall that
p > 13. By the work of Bilu, Parent and Rebolledo (see Remark 1.8), hypothesis (H ′)
is satisfied and E/Q must have CM by a quadratic imaginary field K, and p splits in K.
By Theorem 7.6, the group G must be the full normalizer of a split Cartan subgroup, i.e.,
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G = C+sp. Lemma 7.5 tell us that [Q(R) : Q] = 2(p − 1) or (p − 1)2 and both possibilities
occur. Hence d ≥ 2(p− 1) and p ∈ F ′;

(4) Finally, suppose that G is contained in C+nsp, the normalizer of a non-split Cartan subgroup
Cnsp. By Theorem 7.3 we have [Q(R) : Q] ≥ 2(p− 1), so d ≥ 2(p− 1) and p ≤ d/2 + 1. Thus
p ∈ F ′.

This shows SQ(d) ⊆ A∪B∪F ′ and concludes the first part of Theorem 1.7. If in addition we assume
that (H) holds for all p in the range 13 < p < d/2 + 1, then only cases (3) and (4) above need to be
modified.

Suppose first that we are in case (3) and G is contained in C+sp. By Remark 1.8, the prime p > 13
satisfies (H ′) and by Theorem 7.6, we have that p ∈ F . If instead we are in case (4) and G is
contained in C+nsp, then we have seen that p ≤ d/2 + 1. By (H), the group G must contain Cnsp and,
therefore, G = Cnsp or C+nsp. By Lemma 7.5, there is some R′ ∈ E[p] with [Q(R′) : Q] = p2 − 1, so
d ≥ p2 − 1. Thus p ∈ C.

Hence, in all cases, if p 6∈ A ∪ B then p ∈ C ∪ F . Thus SQ(d) ⊆ A ∪ B ∪ C ∪ F and the desired
equality holds. �

To finish this section, we show Corollary 1.9 as an application of Theorem 1.7.

Proof of Corollary 1.9. Let d ≤ 42. By Corollary 1.5, we may assume that d ≥ 22. In order to prove
the corollary, we will use Theorem 1.7.

The fact that 22 ≤ d ≤ 42 implies that all the primes below 19 are in A∪B ⊆ SQ(d), by Theorem
1.4. Thus, hypothesis (H) is trivially satisfied since it only pertains to primes p ≤ d/2 + 1 ≤ 22
which do not belong to A ∪ B, but they all do. Hence, SQ(d) = A ∪ B ∪ C ∪ F for all d ≤ 42, as
claimed. �

3. On Serre’s results

In this section we summarize several results of Serre [43], and we specialize these results to the
particular case of elliptic curves defined over Q. Serre concentrates on the semi-stable case; for our
purposes, we shall need to be more explicit about the case of additive reduction.

Let E be an elliptic curve defined over Q and let p ≥ 5 be a prime. Let K be an extension of Qp,
of the least possible degree such that E/K has good or multiplicative reduction ([48], Ch. VII, Prop.
5.4). Let e be the ramification index of K/Qp, and let ν be a valuation on K such that ν(p) = e.
Let A be the ring of elements of K with valuation ≥ 0.

If E/K has multiplicative reduction, then [K : Qp] ≤ 2 (see [43], §1.12). If E/K has good
reduction, then the ramification index e at p in the extension K/Qp is e = 1, 2, 3, 4 or 6 ([43], §5.6).
Let Fq be the residue field of K, where q = pn. Let us fix an algebraic closure K of K and an
embedding Q ↪→ K. This induces an embedding of Galois groups ι : Gal(K/K) ↪→ Gal(Q/Q). Let
Knr be the largest subextension ofK that is unramified overK, and letKt be the largest subextension
of K that is tamely ramified over K. We write IK = ι(Gal(K/Knr)) and IK,p = ι(Gal(K/Kt)) for
the corresponding inertia subgroups in Gal(Q/Q), via the embedding ι of absolute Galois groups.
Notice that IK,p is the largest pro-p-subgroup of IK . The quotient IK/IK,p = Gal(Kt/Knr) will be
denoted by IK,t.

Let π be a uniformizer for Knr. For any d relatively prime to p, we write Kd = Knr(π
1/d) and

µd for the group of d-th roots of unity. We have an isomorphism Gal(Kd/Knr) ∼= µd given by the
map that sends σ to a d-th root of unity ζσ, such that σ(π1/d) = ζσπ

1/d. The field Kt is the union
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of all Kd, with gcd(d, p) = 1, and IK,t = Gal(Kt/Knr) can be identified with the inverse limit
lim←−Gal(Kd/Knr) over all d relatively prime to p. We define a character θd of IK (which factors
through IK,t) by restricting to Kd, i.e., θd : IK,t → Gal(Kd/Knr) ∼= µd ∼= Z/dZ, as defined in [43],
§1.3; see also §1.7. Each θd is surjective, since it is given by restriction from Kt to Kd. In what
follows we will be particularly interested in θp−1 : IK,t → F×p and θp2−1 : IK,t → F×

p2
.

In the following theorem, we describe the image of IK via the map ρE,p : Gal(Q/Q)→ GL(E[p]),
according to the type of reduction of E/K and the ramification index e of K/Qp. First, we introduce
some notation. A semi-Cartan subgroup D of GL(2,Fp) is a subgroup of the form{(

a 0
0 1

)
: a ∈ F×p

}
.

The precise definitions of split Cartan, non-split Cartan and Borel subgroups will appear in Def-
initions 6.1, 7.1 and 9.1, respectively. For general results about these types of groups, see [43],
§2.

Theorem 3.1 (Serre, [43]). With notation as above, let f = gcd(p − 1, e), and let Df be the f -th
power of a semi-Cartan subgroup.

(1) If E/K has good ordinary reduction or multiplicative reduction, then there is an Fp-basis
{P,Q} of E[p] such that ρE,p(IK) contains Df ;

(2) If E/K has good supersingular reduction, then there is an Fp-basis {P,Q} of E[p] such that:
(a) ρE,p(IK) is the e-th power of a non-split Cartan subgroup; or
(b) ρE,p(IK,p) is non-trivial, i.e., ρE,p(IK,p) contains a non-trivial element of order p, and

the image of IK is a Borel subgroup.

Proof. The good ordinary case is treated in Proposition 11 of [43], §1.11. Similarly, the multiplicative
case is in Proposition 13 of §1.12. In both cases, the image of IK,t contains a subgroup of the form{(

θep−1 0
0 1

)}
.

Since θp−1 : IK,t → F×p is surjective, the image of θep−1 is the subgroup formed by all f -th powers in
F×p , where f = gcd(p− 1, e).

The good supersingular case is treated in Proposition 12 of §1.11, but some additional remarks
are necessary when e > 1 (see the Remarque after Prop. 12, and also §1.10).

If E/K has good supersingular reduction (i.e., the formal group Ê/K associated to E has height
2), then the size of the residue field of K is q = p2. Let [p](X) =

∑∞
i=1 aiX

i be the multiplication-
by-p map in Ê. Then ai ∈ A, a1 = p, ν(ai) ≥ 1 if i < q = p2 and ν(aq) = 0. Let N be the part
of the Newton polygon of [p](X) that describes the roots of valuation > 0. Let Pi = (qi, ei), for
i = 0, . . . ,m, be the different vertices of the Newton polygon N , such that 1 = q0 < · · · < qm = q,
and ei = ν(aqi). In particular e0 = ν(a1) = ν(p) = e and em = ν(aq) = 0. Since q = p2 and every qi
is a power of p ([43], p. 272), we have that m = 1 or 2.

Let us first suppose that the Newton polygon N of [p](X) has only one segment (i.e., m = 1),
between P0 = (1, e) and P1 = (p2, 0). The slope between P0 and P1 is −α = −e/(p2 − 1). By the
properties of Newton polygons ([1], Ch. 2, §5), the series [p](X) has p2 − 1 roots with valuation
α, i.e., every non-zero element of E[p] has valuation α. Thus, E[p] can be given a structure of a
1-dimensional Fp2-vector space. Moreover, Proposition 10 of [43] tells us that the action of It on
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E[p] is given by the e-th power of a fundamental character of level 2, θep2−1 : IK,t → (F×
p2

)e, and IK,p
acts trivially. Since θp2−1 : IK,t → F×

p2
is surjective, the image of IK in GL(E[p]) is the e-th power

of a non-split Cartan subgroup (see Remark 7.2 below).
Finally, suppose instead that the Newton polygon N has two segments (i.e., m = 2), with vertices

P0 = (1, e), P1 = (p, e′) and P2 = (p2, 0). The slopes between points are −α1 = −(e − e′)/(p − 1)
and −α2 = −e′/(p2 − p). Let V 0 = {0}, and V i be the space formed by those elements x ∈ E[p]
with valuation ≥ αi. Then (as in [43], §1.10), there is a filtration {0} = V 0 ( V 1 ( V 2 = E[p],
with card(V 1) = p and card(V 2) = p2, and Gal(K/K) respects this filtration. It follows that the
action of Gal(K/K) on E[p] is upper triangular when we fix a first basis vector in V 1 \ V 0 and a
second basis vector in V 2 \ V 1. By Proposition 10 of [43], when we restrict to the action of IK on
E[p], the character that appears in the upper left corner, i.e., the action on V 1, is given by θe−e

′

p−1 .
By the properties of Newton polygons, there are p2 − p = p(p − 1) elements in E[p] with valuation
α2 = e′/(p2 − p). Hence, the ramification index in K(E[p])/K is divisible by p. It follows that the
image of IK,p under ρE,p is non-trivial. Thus, ρE,p(IK) is contained in a Borel subgroup, and it has
an element of order p. �

As a result of the previous theorem, and using the classification of maximal subgroups of GL(2,Fp)
that Serre describes in [43], §2 (in particular, see §2.6, and Prop. 17 in §2.7), one deduces the following
theorem.

Theorem 3.2 (Serre, [43]). Let e = 1, 2, 3, 4 or 6 be the ramification index of K/Qp, as before. Let
G be the image of ρE,p, and suppose G 6= GL(E[p]). Then one of the following possibilities holds:

(1) G is contained in the normalizer of a split Cartan subgroup of GL(E[p]) and contains the
f -th power of a semi-Cartan subgroup, i.e., Df ≤ G, where f = gcd(e, p− 1); or

(2) G is contained in the normalizer of a non-split Cartan subgroup of GL(E[p]) and contains
the e-th power of a non-split Cartan subgroup; or

(3) The projective image of G in PGL(E[p]) is isomorphic to A4, S4 or A5, where Sn is the
symmetric group and An the alternating group; or

(4) G is contained in a Borel subgroup of GL(E[p]) and the order of G is divisible by p(p− 1).

The main theorem of [43] is the following.

Theorem 3.3 (Serre). Let E/Q be an elliptic curve without complex multiplication (CM). Then ρE,p
is surjective for all but finitely many primes p.

4. Preliminaries

In this section we establish some notation and preliminary results that we shall use repeatedly in
the rest of the paper. Let E/Q be an elliptic curve and let p be a prime. Fix an Fp-basis of E[p] and
let ρE,p : Gal(Q/Q)→ Aut(E[p]) ∼= GL(2,Fp) be the Galois representation induced by the action of
Galois on E[p]. The image of ρE,p will be denoted by G. Since the kernel of ρE,p is Gal(Q/Q(E[p])),
we deduce that G ∼= Gal(Q(E[p])/Q).
Lemma 4.1. Let G ≤ GL(2,Fp) be as above. Then the determinant map G→ F×p is surjective.

Proof. It is well-known that the determinant of ρE,p is the cyclotomic character Gal(Q/Q) → F×p ,
thus det(ρE,p) : Gal(Q/Q)→ F×p is surjective. Since ρE,p factors through Gal(Q(E[p])/Q), the map
Gal(Q(E[p])/Q) ↪→ GL(2,Fp)→ F×p is surjective as well. �
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Let R = (x(R), y(R)) ∈ E[p] be a torsion point. The (minimal) field of definition of R, i.e., the
number field Q(x(R), y(R)), will be denoted by Q(R). Since Q(R) ⊆ Q(E[p]), it follows that there
is a subgroup H ≤ G such that Q(R) is the fixed field of Q(E[p]) by H, i.e., Q(R) = Q(E[p])H .
Moreover, by Galois theory, we know that [Q(R) : Q] = |G/H|. In order to give a lower bound on
[Q(R) : Q] it suffices to bound the quotient |G|/|H|.

Also, we can deduce that H ≤ G ≤ GL(2,Fp) fixes each element of a 1-dimensional Fp-subspace
V of E[p] ∼= F2p, namely V = 〈R〉. Therefore, each matrix in H has an eigenvalue λ = 1, and V is
contained in the corresponding λ-eigenspace.

5. Full image

Theorem 5.1. Let p be a prime and let E/Q be an elliptic curve. Suppose that ρE,p is surjective,
i.e., its image is GL(E[p]). Then, for every non-trivial torsion point R ∈ E[p], the degree of the field
of definition of R satisfies [Q(R) : Q] = p2 − 1.

Proof. Let E, p and R be as in the statement of the theorem. Let Q ∈ E[p] such that {R,Q} is
an Fp-basis of E[p]. With respect to this basis, the field of definition Q(R) is the fixed field of the
subgroup

H =

{(
1 a
0 b

)
: a ∈ Fp, b ∈ F×p

}
≤ GL(2,Fp).

Since |GL(2,Fp)| = (p2 − 1)(p2 − p) and |H| = p2 − p, we conclude that

[Q(R) : Q] = |G/H| = (p2 − 1)(p2 − p)/(p2 − p) = p2 − 1,

as claimed. �

As a consequence of Theorems 3.3 and 5.1, we obtain the following corollary.

Corollary 5.2. Let E/Q be an elliptic curve without complex multiplication. Then, for all but
finitely many primes p, the field of definition of any non-trivial torsion point R ∈ E[p] has degree
p2 − 1 over Q.

6. Normalizer of a split Cartan

Definition 6.1. Let p ≥ 3 be a prime. The split Cartan subgroup of GL(2,Fp) is the subgroup

Csp =

{(
a 0
0 b

)
: a, b ∈ F×p

}
.

In order to abbreviate matrix notation, we define diagonal and anti-diagonal matrices:

D(a, b) =

(
a 0
0 b

)
, A(c, d) =

(
0 c
d 0

)
,

for any a, b, c, d ∈ F×p . With this notation, Csp = {D(a, b) : a, b ∈ F×p }.

Theorem 6.2. Let p be a prime and let E/Q be an elliptic curve. Suppose that there is an Fp-basis
{P,Q} of E[p] such that the image of ρE,p is a subgroup of Csp. Then p ≤ 5.
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Proof. Let p, E/Q and {P,Q} be as in the statement of the theorem. Then, 〈P 〉 and 〈Q〉 are distinct
subgroups of E, cyclic of order p, which are stable under the action of Gal(Q/Q). By Prop. 4.12 of
[48], Ch. III, there are unique elliptic curves E′ = E/〈P 〉 and E′′ = E/〈Q〉, and isogenies φ′ : E → E′

and φ′′ : E → E′′ with kernel 〈P 〉 and 〈Q〉, respectively. Moreover, E and E′ are elliptic curves
defined over Q (see [48], Ch. III, Remark 4.13.2). Since |〈P 〉| = |〈Q〉| = p, the curve E is p-isogenous
(over Q) to E′ and E′′, and each one of these curves is in a different Q-isomorphism class. Hence,
there are at least 3 non-Q-isomorphic elliptic curves (over Q) in the p-isogeny class of E. Let Cp(E)
be the number of Q-isomorphism classes of elliptic curves that are isogenous to E via an isogeny
whose degree is a non-negative power of p. By Theorem 2 of [26], the number Cp(E) is bounded as
in Table 1.

Table 1: Bounds for Cp(E)

p 2 3 5 7 11 13 17 19 37 43 67 163 else

Cp(E) ≤ 8 4 3 2 2 2 2 2 2 2 2 2 1

Note: C =
∏
pCp ≤ 8, and C = 8 iff C2 = 8, or C2 = 4 and C3 = 2.

References: [26]; see also [4], [35], [45].

Hence the prime p must be less than or equal to 5. �

Example 6.3. Let E be the elliptic curve given by y2 + y = x3 − x2 − 10x − 20. Let P and Q be
points defined by

P = (5, 5), and Q = (4ζ35 + 2ζ25 + 3ζ5 + 2, 3ζ35 − 4ζ25 + 5ζ5),

where ζ5 is a primitive 5th root of unity. Then, the image of ρE,5 with respect to the basis {P,Q}
is the subgroup {(

1 0
0 b

)
: b ∈ F×5

}
≤ Csp.

Indeed, Gal(Q(E[5])/Q) = Gal(Q(ζ5)/Q) ∼= F×5 . The elliptic curve E is 5-isogenous to E′ = E/〈P 〉 :
y2 + y = x3 − x2 − 7820x − 263580 and E′′ = E/〈Q〉 : y2 + y = x3 − x2. The Q-isogeny class of E
consists precisely of E, E′ and E′′.

Next we treat the case when the Galois group Gal(Q(E[p])/Q) embeds into the normalizer of
the split Cartan subgroup. It is easy to show that the normalizer of the split Cartan subgroup of
GL(2,Fp) is the subgroup

C+sp = {D(a, b), A(c, d) : a, b, c, d ∈ F×p }.
Remark 6.4. Serre’s uniformity problem (see our remarks before Theorem 1.4) has been proved by
Bilu and Parent [2] in the case of the normalizer of a split Cartan: there is a constant N , that does
not depend on the elliptic curve E/Q, such that if Gal(Q(E[p])/Q) embeds into the normalizer of
the split Cartan subgroup and E is not CM, then p ≤ N .

In the rest of this section, we shall prove the following result.

Theorem 6.5. Let E/Q be an elliptic curve and let p ≥ 11 be a prime. Let R ∈ E[p] be a
point of exact order p. Suppose that there is an Fp-basis of E[p] such that the image of ρE,p lies
in the normalizer of the split Cartan subgroup, but it is not contained in the split Cartan. Then
[Q(R) : Q] ≥ p− 1.
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Lemma 6.6. Let H be a non-trivial subgroup of C+sp that fixes each element in a 1-dimensional
Fp-subspace V of F2p. Then:

(1) H ≤
{
D(1, b) : b ∈ F×p

}
and V = 〈(1, 0)〉; or

(2) H ≤
{
D(a, 1) : a ∈ F×p

}
and V = 〈(0, 1)〉; or

(3) H =
{
D(1, 1), A(c, c−1)

}
for some c ∈ F×p and V = 〈(c, 1)〉.

Proof. Clearly, the eigenvectors of a diagonal matrix D(a, b) are (1, 0) and (0, 1), with eigenvalues
a and b, respectively. Also, an anti-diagonal matrix A(c, d) has eigenvalues ±λ such that λ2 = cd.
Thus, if λ = 1, then d = c−1. Finally, notice that A(c, c−1)2 = D(1, 1). �

Proof of Theorem 6.5. Let G = Gal(Q(E[p])/Q). By assumption, there exists an Fp-basis {P,Q} of
E[p] such that G is isomorphic to a subgroup of C+sp. By abuse of notation, we will say G ≤ C+sp. Our
assumptions also include that G 6≤ Csp. By Lemma 4.1, det : G → F×p is surjective. In particular,
the order of G is divisible by p − 1. For the remainder of the proof, we fix a matrix Mg ∈ G
such that det(Mg) = g, where g ∈ F×p is a primitive root modulo p (i.e., the order of g is exactly
p− 1). By Theorem 3.2, G contains Df , the f -th power of the semi-Cartan subgroup of GL(2,Fp),
where f = gcd(p − 1, e), and e = 1, 2, 3, 4 or 6. In our notation, Df = {D(a, 1) : a ∈ Jf}, where
Jf = (F×p )f ≤ F×p is the subgroup formed by all f -th powers. Thus, |Df | = |Jf | = (p− 1)/f . Since
f ≤ e ≤ 6 and p ≥ 11, the group Jf has order ≥ 2. Let α be a generator of Jf (in particular
α 6≡ 1 mod p), and let D(α, 1) be the corresponding generator matrix of Df .

Since G ≤ C+sp but G 6≤ Csp, there is a matrix A = A(c, d) ∈ G, for some c, d ∈ F×p , and since G is
a group, A−1 = A(d−1, c−1) ∈ G as well. We also remark on the following equation:(

0 d−1

c−1 0

)(
a 0
0 b

)(
0 c
d 0

)
=

(
b 0
0 a

)
.(1)

In particular, this shows that if D(a, b) ∈ G then D(b, a) is also in G and, therefore, D(a, b)D(b, a) =
D(ab, ab) ∈ G as well. We will use this remark several times below.

Let H be as in Section 4. Hence, we can use Lemma 6.6. Let us assume first that H ={
D(1, 1), A(c, c−1)

}
and so, H is a subgroup of order 2. Thus, one immediately obtains that

|G/H| ≥ (p− 1)/2. In order to improve this bound, we need to consider two cases according to the
shape of Mg. If Mg = D(a, b) with ab = g, then D(ab, ab) = D(g, g) ∈ G by Eq. (1) and the remark
that followed it. Hence, D(gk, gk)A(c, c−1) = A(cgk, c−1gk) ∈ G and the set

{D(gk, gk) : k = 1, . . . , p− 1} ∪ {A(cgk, c−1gk) : k = 1, . . . , p− 1}

is contained inG. Thus, |G| ≥ 2(p−1) and |G/H| ≥ p−1. The other possibility is thatMg = A(m,n)
with −mn = g. In this case, M2

g = D(mn,mn) = D(−g,−g). The element h = −g ∈ F×p has order
p− 1 or (p− 1)/2 according to whether p ≡ 1 or 3 mod 4, respectively.

• Suppose p ≡ 1 mod 4. Since h = −g has order p−1, we have that D(a, a) ∈ G, for all a ∈ F×p
and, therefore, {D(a, a), A(ca, c−1a) : a ∈ F×p } ⊆ G. Thus, |G| ≥ 2(p−1) and |G/H| ≥ p−1.
• Suppose p ≡ 3 mod 4. We need to consider two additional cases, according to whether α, a
generator of Jf = (F×p )f , is a quadratic residue.
– If α ∈ Jf is a quadratic non-residue, then αh is a quadratic non-residue as well, because
h = −g is a square. Since the order of h is (p− 1)/2, the set {hk, αhk : k = 1, . . . , (p−
1)/2} = F×p . Since D(α, 1) ∈ Df ≤ G, we also have D(α, α) ∈ G by Eq. (1), and
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D(α, α)D(hk, hk) = D(αhk, αhk) ∈ G as well. Hence,

{D(hk, hk), D(αhk, αhk) : k = 1, . . . , (p− 1)/2} = {D(a, a) : a ∈ F×p }

is contained in G. Thus, {D(a, a), A(ca, c−1a) : a ∈ F×p } ⊆ G and we can conclude that
|G/H| ≥ p− 1.

– If α ∈ Jf is not a quadratic residue, then each of the matrices in the following set K
belong to G:

K = {D(tα, t), D(t, αt), A(ctα, c−1t), A(ct, c−1tα) : t ∈ (F×p )2}.

Notice that, if D(tα, t) ≡ D(s, αs) where t, s are squares modulo p, then α ≡ s/t would
also be a square. Similarly, the congruence A(ctα, c−1t) ≡ A(cs, c−1sα) is impossible for
squares t, s. Thus, K has size 4 · (p−1)/2 = 2(p−1) and K ⊆ G. Hence |G/H| ≥ p−1,
as desired.

Having taking care of the case when |H| = 2, and according to Lemma 6.6, to finish the proof of
the theorem it suffices to consider the case when H = {D(1, b) : b ∈ J}, where J is an arbitrary
subgroup of F×p (the same proof will apply to case (2) of Lemma 6.6, by symmetry).

Once again, we divide the proof into two cases: when Mg = D(a, b) for some a, b ∈ F×p , or
Mg = A(m,n), for some m,n ∈ F×p :

If Mg is of the form D(a, b) ∈ G, then ab = g and D(ab, ab) = D(g, g) ∈ G by Eq. (1). By taking
powers of D(g, g) we deduce that D(a, a) ∈ G for all a ∈ F×p , and the fact that H ≤ G implies that
the product D(a, a)D(1, b) ∈ G for all a ∈ F×p and all b ∈ J . This shows that |G| ≥ (p− 1)|J | and

|G/H| = |G|
|H|

=
|G|
|J |
≥ (p− 1)|J |

|J |
= p− 1.

It remains to consider the case when Mg = A(m,n), with −mn = g. Then M2
g = A(m,n)2 =

D(mn,mn) = D(−g,−g). If p ≡ 1 mod 4, the element −g is also a primitive root and, proceeding
as in the case when Mg was diagonal, we reach |G/H| ≥ p− 1. If p ≡ 3 mod 4, then G contains

L = {D(tj, t), A(tmj, tn) : t ∈ (F×p )2, j ∈ J}.

Since |G| ≥ |L| = 2 · |J | · (p − 1)/2 = (p − 1)|J |, we conclude that |G/H| ≥ p − 1, as desired. This
finishes the proof of the theorem. �

7. Normalizer of a non-split Cartan

Definition 7.1. Let p ≥ 3 be a prime. The non-split Cartan subgroup of GL(2,Fp) is the subgroup

Cnsp =

{(
a εb
b a

)
: a, b ∈ Fp, (a, b) 6≡ (0, 0) mod p

}
,

where ε is a fixed quadratic non-residue of Fp. In order to abbreviate matrix notation, we define two
types of matrices:

M(a, b) =

(
a εb
b a

)
, N(c, d) =

(
c εd
−d −c

)
,

for any a, b, c, d ∈ Fp, such that (a, b), (c, d) 6≡ (0, 0) mod p. With this notation, Cnsp = {M(a, b) :
a, b ∈ Fp, (a, b) 6≡ (0, 0) mod p}.
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Remark 7.2. The group Cnsp is isomorphic to F×
p2
. Indeed, let ε be a fixed quadratic non-residue

of F×p . Then Fp2 ∼= Fp[X]/(X2 − ε). We define a map ψ : (Fp[X]/(X2 − ε))× → GL(2, p) so that
ψ(a+bX) is the matrix of the linear multiplication-by-(a+bX) map in Fp[X]/(X2−ε), with respect
to the basis {1, X}. The map ψ is an isomorphism between F×

p2
and Cnsp. Notice that Cnsp is abelian,

cyclic of order p2 − 1.

It is easy to show that the normalizer of the non-split Cartan subgroup of GL(2,Fp) is the subgroup

C+nsp = {M(a, b), N(c, d) : a, b, c, d ∈ Fp, (a, b), (c, d) 6≡ (0, 0) mod p}.

In this section we prove the following result.

Theorem 7.3. Let E/Q be an elliptic curve and let p ≥ 3 be a prime. Let R ∈ E[p] be a point
of exact order p. Suppose that there is an Fp-basis of E[p] such that the image of ρE,p lies in the
normalizer of the non-split Cartan subgroup. Then [Q(R) : Q] ≥ (p2 − 1)/e, where e ≤ 6 is the
ramification index of the extension K/Qp defined in Section 3. In particular, [Q(R) : Q] ≥ 2(p− 1)
for all p ≥ 11.

Lemma 7.4. Let H be a non-trivial subgroup of C+nsp that fixes each element in a 1-dimensional
Fp-subspace V of F2p. Then:

H = {D(1, 1), N(c, d)}
for some c, d ∈ Fp with c2 − εd2 = 1.

Proof. A simple calculation reveals that the eigenvalues of a matrix of the formM(a, b), with a, b ∈ Fp
and (a, b) 6≡ (0, 0) mod p, are precisely a ± b

√
ε ∈ Fp. Since ε is a quadratic non-residue modulo

p, we conclude that the only matrix M(a, b) that fixes a non-trivial vector in F2p is the identity
M(1, 0) = D(1, 1).

Similarly, the matrix N(c, d) has eigenvalues ±λ with λ2 = c2 − εd2. If c2 − εd2 = 1, then
det(N(c, d)) = −1 and N(c, d)2 = D(1, 1) is the identity matrix. The eigenvectors of N(c, d) with
eigenvalue 1 are the multiples of (−εd, c− 1) if c 6≡ 1, or the multiples of (1, 0) if c ≡ 1, d ≡ 0 mod p.
Thus N(c, d) and N(c′, d′) have the same eigenvector (with eigenvalue 1) if and only if the vector
(−εd, c− 1) is in the kernel of the matrix (N(c, d)−N(c′, d′)) = N(c− c′, d− d′). In particular, its
determinant, −(c− c′)2 + ε(d− d′)2, vanishes. Since ε is a quadratic non-residue, the determinant of
N(c− c′, d−d′) vanishes if and only if c ≡ c′ and d ≡ d′ mod p, i.e., if N(c, d) ≡ N(c′, d′) mod p. �

Proof of Theorem 7.3. Let G = Gal(Q(E[p])/Q). By assumption, there exists an Fp-basis {P,Q} of
E[p] such that G is isomorphic to a subgroup of C+nsp. By abuse of notation, we will say G ≤ C+nsp.

Let H be as in Section 4. Hence, we can use Lemma 7.4. Thus, H is trivial or H has two elements,
i.e., H = {D(1, 1), N(c, d)}, with with c2 − εd2 = 1.

By Theorem 3.2, G contains the e-th power of the non-split Cartan subgroup, Censp. Hence,

|G| ≥ (p2 − 1)/e ≥ (p2 − 1)/6 = (p+ 1)(p− 1)/6 ≥ 12(p− 1)/6 = 2(p− 1)

for all p ≥ 11. If H is trivial, then |G/H| ≥ (p2 − 1)/e ≥ 2(p− 1), as claimed. Let us suppose now
that H is of order 2, and let M ∈ G be an element of exact order (p2− 1)/e, that generates the e-th
power of the non-split Cartan subgroup Censp. Then, the set

{Mk, N(c, d)Mk : k = 1, . . . , (p2 − 1)/e}
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has size 2(p2 − 1)/e. Hence,

|G/H| ≥ |G|/2 ≥ (2(p2 − 1)/e)/2 ≥ (p2 − 1)/e ≥ 2(p− 1)

for all p ≥ 11. This finishes the proof of the theorem. �

Putting together our results in this section and those of Section 6, we can prove the following
results about elliptic curves over Q whose image of ρE,p contains a Cartan subgroup.

Lemma 7.5. Let E/Q be an elliptic curve, p a prime, and let G be the image of ρE,p.

(1) Suppose G ∼= C+sp. If R ∈ E[p] is non-trivial, then [Q(R) : Q] = 2(p− 1) or (p− 1)2 and both
possibilities occur.

(2) Suppose G ∼= Cnsp or C+nsp. if R ∈ E[p] is non-trivial, then [Q(R) : Q] = p2 − 1 or 2(p2 − 1).
Moreover, there is some R′ ∈ E[p] with [Q(R′) : Q] = p2 − 1.

Proof. Suppose first that G ∼= C+sp. By Lemma 6.6, if R ∈ E[p] is non-trivial, and R belongs to 〈P 〉
or 〈Q〉, then [Q(R) : Q] = 2(p− 1). Otherwise, [Q(R) : Q] = (p− 1)2.

If G = Cnsp, Lemma 7.4 tells us that Q(R) = Q(E[p]) and [Q(R) : Q] = p2 − 1. If G = C+nsp, then
|G| = 2(p2 − 1) and Q(R) = Q(E[p])H with |H| = 1 or 2. Thus [Q(R) : Q] = p2 − 1 or 2(p2 − 1).
Moreover, Lemma 7.4 shows that there are points R′ ∈ E[p] for which |H| = 2. �

Theorem 7.6. Let E/Q be an elliptic curve with CM by an order O of a quadratic imaginary field
K. Let p ≥ 7 be an unramified prime in K/Q. Let G be the image of the representation ρE,p.

(1) If p is split in K, then G is the normalizer of a full split Cartan subgroup C+sp.
(2) If p is inert in K, then G is either a non-split Cartan subgroup Cnsp or its normalizer C+nsp.

In particular, the field of definition of any R ∈ E[p] satisfy the conclusions of Lemma 7.5.

Proof. Notice that the discriminant of O and the discriminant of K only differ by a power of 2 or a
power of 3 (see the Table in Appendix A.3 of [49]). Since p ≥ 7 and p is unramified in K/Q, then
gcd(p, disc(O)) = gcd(p, disc(E/Q)) = 1, and p is a prime of good reduction for E/Q (thus, e = 1).

By the theory of complex multiplication, G is contained in the normalizer of a Cartan subgroup.
If p ≥ 7 splits in K, then G is contained in the normalizer of a non-split Cartan C+sp with respect
to some basis {P,Q}. By Theorems 6.2 and 3.2, respectively, the group G cannot be contained in
Csp, and G contains a semi-Cartan group D, of order p − 1. By Eq. (1), the group G must also
contain the lower semi-Cartan {D(1, b) : b ∈ F×p }, and, therefore, Csp � G ≤ C+sp. Thus, G = C+sp and
|G| = 2(p− 1)2.

If p is inert in K, then G is contained in the normalizer of a non-split Cartan with respect to some
basis {P,Q}, and by Theorem 3.2, the group G contains a non-split Cartan subgroup Cnsp of order
p2 − 1. Hence G ∼= Cnsp or C+nsp. �

8. Exceptional Subgroups

Let Sn be the symmetric group on n letters and An the alternating group.

Theorem 8.1. Let E/Q be an elliptic curve, and p ≥ 3 a prime number, such that the image of
ρE,p in PGL(E[p]) is isomorphic to G = A4, S4, or A5. Then p ≤ 13 and G = S4.
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Proof. Serre has shown that this situation does not occur for p ≥ 17 ([46], Lemme 18). Moreover,
the cases of A4 and A5 cannot occur for an elliptic curve over Q. Indeed, for H = A4, A5 or S4, let
XH(p) be the modular curve that parametrizes all elliptic curves E such that the projective image of
G = Gal(Q(E[p])/Q) in PGL(E[p]) is H. For details on the construction of XH and its properties,
see [35], §2. The modular curves XA4(p) and XA5(p) are defined over the unique quadratic subfield
of Q(µp) (see [35], §2, MAZ-10, p. 116) and, therefore, cannot have Q-rational points ([35], §2,
MAZ-15, p.121, Remark 4(d)). �

Remark 8.2. The curve XS4(p) is defined over Q when p ≡ ±3 mod 8, and is defined over the
quadratic subfield of Q(µp) otherwise. Serre has exhibited Q-rational points on XS4(p) for p = 11
and 13 using elliptic curves with complex multiplication by Q(

√
−3).

By Theorem 8.1, and since we will exclude p = 2, 3, 5, 7 and 13 for our purposes in our main result,
Theorem 2.1, we only need to deal with the case p = 11.

Theorem 8.3. Let E/Q be an elliptic curve and let p = 11. Let R ∈ E[p] be a point of exact order p.
Suppose that the image of ρE,p in PGL(2,Fp) is isomorphic to S4. Then [Q(R) : Q] ≥ 60 > 10 = p−1.

Proof. Let p = 11 and let G = Gal(Q(E[p])/Q). By assumption, G, the projective image of G
in PGL(2,Fp), is isomorphic to S4. Let ZG be the subgroup of G formed by those matrices in
G that are scalar matrices, i.e., ZG = G ∩ {D(λ, λ) : λ ∈ F×p }. Then G = G/ZG ∼= S4. In
particular, |G| is divisible by 24. Also, by Lemma 4.1, |G| is divisible by 10. Hence, |G| is divisible
by lcm(24, 10) = 120. Since 5 is not a divisor of |S4|, we conclude that every element of order 5 in
G belongs to ZG, i.e., it is a scalar matrix in G.

Let H be as in Section 4. Let Q ∈ E[p] be another point such that {R,Q} is an Fp-basis of E[p].
With respect to this basis, H is a subgroup of a Borel

B =

{(
1 a
0 b

)
: a ∈ Fp, b ∈ F×p

}
.

Since |G| is not divisible by 11, then |H| is a divisor of |F×p | = 10. Moreover, B ∩ ZG = {D(1, 1)},
so H cannot contain elements of order 5. Hence |H| = 1 or 2. Therefore, [Q(R) : Q] = |G/H| ≥
120/2 = 60, as claimed. �

9. Borel Subgroups

Definition 9.1. Let p ≥ 2 be a prime. Let J be a subgroup of F×p × F×p such that the map J → F×p ,
defined by (u, v) 7→ uv, is surjective. A Borel subgroup of GL(2,Fp) is a subgroup of the form:

B = B(J) =

{(
a b
0 c

)
: (a, c) ∈ J, b ∈ Fp

}
.

In order to abbreviate matrix notation, we define a type of matrix:

B(a, b, c) =

(
a b
0 c

)
for any a, c ∈ F×p and any b ∈ Fp.

Lemma 9.2. Let H be a non-trivial subgroup of a Borel subgroup B(J) that fixes each element in a
1-dimensional Fp-subspace V of F2p. Then:
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(1) H ≤
{
B(1, b, c) : b ∈ Fp, c ∈ F×p

}
and V = 〈(1, 0)〉; or

(2) There is some λ ∈ Fp such that H is a subgroup of

Bλ = {B(1− b, λb, 1) : b ∈ Fp, b 6≡ 1 mod p}

and V = 〈(λ, 1)〉.

Proof. Clearly, the eigenvalues of a matrix B(a, b, c) are a and c. A matrix B(a, b, c) fixes each
element in the subspace 〈(1, 0)〉 if and only if a ≡ 1 mod p. If V 6= 〈(1, 0)〉, then there is λ ∈ Fp such
that V = 〈(λ, 1)〉. We claim that the matrices of the form B(a, b, c) that fix vλ = (λ, 1) are those in
the subgroup Bλ in the statement of the lemma. This is clear if λ ≡ 0 mod p, so we will assume λ
is a unit. It is also clear that, if B(a, b, c) fixes (λ, 1) then c must be 1 mod p. Moreover, a simple
calculation shows that B(1− b, λb, 1)vλ = vλ, for any b 6≡ 1 mod p, so the matrices in Bλ fix vλ.

Now, suppose that B(a′, b′, 1), with a′ ∈ F×p and b′ ∈ Fp, fixes vλ. Then the vector vλ = (λ, 1) is
in the kernel of the matrix

M = B(1− b′/λ, b′, 1)−B(a′, b′, 1) ≡ B(1− b′/λ− a′, 0, 0) mod p.

Thus, a′ ≡ 1− b′/λ mod p. Hence, B(a′, b′, 1) ≡ B(1− b′/λ, b′, 1) ∈ Bλ, and this concludes the proof
of the lemma. �

Theorem 9.3. Let E/Q be an elliptic curve and let p be a prime such that the image of ρE,p is a
Borel subgroup B(J), with respect to some basis {P,Q} of E[p]. Then:

(1) The extension Q(P )/Q is Galois, cyclic, of degree ≤ p− 1;
(2) If R ∈ E[p] but R 6∈ 〈P 〉, then [Q(R) : Q] ≥ p.

Proof. Let G = Gal(Q(E[p])/Q). By assumption, there exists an Fp-basis {P,Q} of E[p] such that
G is isomorphic to a Borel subgroup B(J). By abuse of notation, we will say G = B(J). Let R and
H be as in Section 4. Hence, we can use Lemma 9.2 and there are two possibilities:

• R ∈ 〈P 〉. Then H = G ∩
{
B(1, b, c) : b ∈ Fp, c ∈ F×p

}
. A simple calculation shows that H is

normal in B(J) and, hence, Q(P )/Q is Galois. Moreover, G/H ↪→ B(J)/{B(1, b, c)} ≤ F×p .
Therefore Gal(Q(P )/Q) is cyclic and of degree ≤ p− 1.
• R 6∈ 〈P 〉. Then R ∈ 〈λP +Q〉 and H = G∩Bλ. Thus |H| is a divisor of |Bλ| = p− 1. Since
G = B(J), the order of G is divisible by p, and so |G| ≥ p · |H| = p · |G ∩Bλ|. Hence,

|G/H| = |G|/|H| ≥ p · |G ∩Bλ|/|G ∩Bλ| ≥ p.

The proof of the theorem is complete. �

In the rest of this section, our goal is to prove the following theorem.

Theorem 9.4. Let E/Q be an elliptic curve and let p = 11 or p ≥ 17 be a prime. Suppose that
there is an Fp-basis {P,Q} of E[p] such that the image of ρE,p is a Borel subgroup. Let R ∈ E[p]
be non-trivial. Then [Q(R) : Q] ≥ (p − 1)/2, except if j = −7 · 113 and p = 37, in which case
[Q(R) : Q] ≥ (p− 1)/3 = 12.

In order to prove Theorem 9.4, we shall use the classification of all Q-rational points on the
modular curves X0(N), which we discuss in the next subsection. We will tackle the proof of the
theorem in Subsection 9.2.
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9.1. Rational points on the modular curve X0(N). Let H be the complex upper half-plane, let
N ≥ 1 and let Γ0(N) be the usual congruence subgroup of SL(2,Z) given by

Γ0(N) =

{(
a b
c d

)
∈ SL(2,Z) : c ≡ 0 mod N

}
.

The group SL(2,Z) acts on H by linear fractional transformations, i.e., if M =

(
a b
c d

)
∈ SL(2,Z)

then we define an action Mz = az+b
cz+d , for any z ∈ H. Let Y0(N) = H/Γ0(N) and let X0(N) be the

compactification of Y0(N). The finite set of points in X0(N) \ Y0(N) are called the cusps of X0(N),
and can be identified with P1(Q)/Γ0(N). Thus constructed, X0(N) is a compact algebraic curve
defined over C, but it has a model defined over Q (see [35], §2, or [10], Ch. 7). Moreover, X0(N) is a
moduli space of isomorphism classes of ordered pairs (E,C), where E is a complex elliptic curve and
C is a cyclic subgroup of E of order N (see [10], Section 1.5). The non-cuspidal Q-rational points of
X0(N) have the following equivalent moduli interpretations:

• Isomorphism classes of pairs (E/Q, C/Q), where E/Q is an elliptic curve with a Q-rational
cyclic subgroup C of E of order N .
• Isomorphism classes of pairs (E/Q, 〈P 〉), where E/Q is an elliptic curve, and P is a torsion
point of order N such that Q(P ) is Galois over Q.
• Isomorphism classes of elliptic curves E/Q such that the image of ρE,N is contained in a
Borel subgroup of GL(2,Z/NZ) with respect to some Z/NZ-basis of E[n].
• Isomorphism classes of pairs (E/Q, E′/Q, φ) of elliptic curves over Q and an isogeny φ : E →
E′ with cyclic kernel of size N .

The Q-rational points on X0(N) have been described completely in the literature, for all N . One
of the most important milestones in the classification was [33], where Mazur dealt with the case when
N is prime. The complete classification of Q-rational points on X0(N), for any N , was completed due
to work of Fricke, Kenku, Klein, Kubert, Ligozat, Mazur and Ogg, among others (see the references
at the bottom of Tables 2, 3 and 4).

Theorem 9.5. Let N ≥ 2 be a number such that X0(N) has a non-cuspidal Q-rational point. Then:
(1) N ≤ 10, or N = 12, 13, 16, 18 or 25. In this case X0(N) is a curve of genus 0 and, hence,

the is a 1-parameter family with infinitely many different Q-rational points; or
(2) N = 11, 14, 15, 17, 19, 21, 27, 37, 43, 67 or 163. In this case X0(N) is a curve of genus ≥ 1

and there are only finitely many Q-rational points.

About Tables 2, 3 and 4. For the convenience of the reader, we have collected in Tables 3 and
4 a complete list of all non-cuspidal Q-rational points on the modular curves X0(N). These points
are well-known, but seem to be spread out accross the literature. Our main references are [4], [33]
and [26], but we have consulted many other references, which we list at the bottom of each table.

When X0(N) is a curve of genus zero, its function field is generated over C by a single function
h = hN (usually called the Hauptmodul of X0(N)). In other words, the function field C(X0(N)) is
of the form C(h). Since the modular j-invariant function is a Hauptmodul for X0(1) = X(1), the
function field C(h) is a finite extension of C(j) and, therefore, h is algebraic over C(j). For each N
such that X0(N) has genus 0, we have listed in Table 2 a choice of Hauptmodul h = hN in terms
of the η function. In Table 3, we have listed an algebraic relation between h and j. For each N we
have also listed a function j′, in terms of h with the following property: for every elliptic curve E
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with j(E) = j there is an elliptic curve E′ with j(E′) = j′ and an isogeny φ : E → E′ with cyclic
kernel of size N .

When X0(N) is a curve of genus ≥ 1, there are only finitely many Q-points for each N , and these
correspond to finitely many rational j-invariants. In Table 4, we list all the j-invariants and we also
list the Cremona label of a representative for each class, with the least possible conductor. Finally,
we indicate whether the j-invariant has complex multiplication. If it does, we list the associated
quadratic discriminant.

Table 2: Hauptmoduln for the function field of X0(N), genus 0 case
N Hauptmodul N Hauptmodul

2 h = 212 ·
(
η(2τ)
η(τ)

)24
9 h = 3 + 33 ·

(
η(9τ)
η(τ)

)3
3 h = 36 ·

(
η(3τ)
η(τ)

)12
10 h = 4 + 225 · η(2τ)η(10τ)

3

η(τ)3η(5τ)

4 h = 28 ·
(
η(4τ)
η(τ)

)8
12 h = 3 + 233 · η(2τ)

2η(3τ)η(12τ)3

η(τ)3η(4τ)η(6τ)2

5 h = 53 ·
(
η(5τ)
η(τ)

)6
13 h = 13 ·

(
η(13τ)
η(τ)

)2
6 h = 2332 · η(2τ)η(6τ)

5

η(τ)5η(3τ)
16 h = 2 + 23 · η(2τ)η(16τ)

2

η(τ)2η(8τ)

7 h = 72 ·
(
η(7τ)
η(τ)

)4
18 h = 2 + 2 · 3 · η(2τ)η(3τ)η(18τ)

2

η(τ)2η(6τ)η(9τ)

8 h = 4 + 25 · η(2τ)
2η(8τ)4

η(τ)4η(4τ)2
25 h = 1 + 5 ·

(
η(25τ)
η(τ)

)
Notation: η(τ) = q1/24

∞∏
n=1

(1− qn), and q = e2πiτ .

References: [12] eq. (80); [13]; [15], [18] pp. 370 - 458; [20] p. 1889; [31].



TORSION POINTS ON ELLIPTIC CURVES OVER Q 19

Table 3: All non-cuspidal rational points on X0(N), genus 0 case

N j and j′-invariants such that E and E′ are N -isogenous

2 j = (h+16)3

h j′ = (h+256)3

h2

3 j = (h+27)(h+3)3

h j′ = (h+27)(h+243)3

h3

4 j = (h2+16h+16)3

h(h+16) j′ = (h2+256h+4096)3

h4(h+16)

5 j = (h2+10h+5)3

h j′ = (h2+250h+55)3

h5

6 j = (h+6)3(h3+18h2+84h+24)3

h(h+8)3(h+9)2
j′ = (h+12)3(h3+252h2+3888h+15552)3

h6(h+8)2(h+9)3

7 j = (h2+13h+49)(h2+5h+1)3

h j′ = (h2+13h+49)(h2+245h+2401)3

h7

8 j = (h4−16h2+16)3

(h2−16)h2 j′ = (h4+240h3+2144h2+3840h+256)3

(h−4)8h(h+4)2

9 j = h3(h3−24)3
h3−27 j′ = (h+6)3(h3+234h2+756h+2160)3

(h−3)8(h3−27)

10 j = (h6−4h5+16h+16)3

(h+1)2(h−4)h5 j′ = (h6+236h5+1440h4+1920h3+3840h2+256h+256)3

(h−4)10h2(h+1)5

12 j = (h2−3)3(h6−9h4+3h2−3)3
h4(h2−9)(h2−1)3 j′ = (h2+6h−3)3(h6+234h5+747h4+540h3−729h2−486h−243)3

(h−3)12(h−1)h3(h+1)4(h+3)3

13 j = (h2+5h+13)(h4+7h3+20h2+19h+1)3

h j′ = (h2+5h+13)(h4+247h3+3380h2+15379h+28561)3

h13

16 j = (h8−16h4+16)3

h4(h4−16)

j′ = (h8+240h7+2160h6+6720h5+17504h4+26880h3+34560h2+15360h+256)3

(h−2)16h(h+2)4(h2+4)

18 j = (h3−2)3(h9−6h6−12h3−8)3
h9(h3−8)(h3+1)2

j′ = (h3+6h2+4)3(h9+234h8+756h7+2172h6+1872h5+3024h4+48h3+3744h2+64)3

(h−2)18h2(h+1)9(h2−h+1)(h2+2h+4)2

25 j = (h10+10h8+35h6−12h5+50h4−60h3+25h2−60h+16)3

h5+5h3+5h−11

j′ = (h10+240h9+2170h8+8880h7+34835h6+83748h5+206210h4+313380h3+503545h2+424740h+375376)3

(h−1)25(h4+h3+6h2+6h+11)

References: [12] eq. (80); [13]; [15], [18] pp. 370 - 458; [20] p. 1889; [31].
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Table 4: All non-cuspidal rational points on X0(N), genus > 0 case

N , genus(X0(N)) j-invariants Cremona Labels Conductor CM?

11, g = 1
j = −11 · 1313 121A1, 121C2 112 No

j = −215 121B1, 121B2 112 −11

j = −112 121C1, 121A2 112 No

14, g = 1
j = −33 · 53 49A1, 49A3 72 −7

j = 33 · 53 · 173 49A2, 49A4 72 −28

15, g = 1

j = −52/2 50A1, 50B3 2 · 52 No

j = −52 · 2413/23 50A2, 50B4 2 · 52 No

j = −5 · 293/25 50A3, 50B1 2 · 52 No

j = 5 · 2113/215 50A4, 50B2 2 · 52 No

17, g = 1
j = −172 · 1013/2 14450P1 2 · 52 · 172 No

j = −17 · 3733/217 14450P2 2 · 52 · 172 No

19, g = 1 j = −215 · 33 361A1, 361A2 192 −19

21, g = 1

j = −32 · 56/23 162B1, 162C2 2 · 34 No

j = 33 · 53/2 162B2, 162C1 2 · 34 No

j = −32 · 53 · 1013/221 162B3, 162C4 2 · 34 No

j = −33 · 53 · 3833/27 162B4, 162C3 2 · 34 No

27, g = 1 j = −215 · 3 · 53 27A2, 27A4 33 −27

37, g = 2
j = −7 · 113 1225H1 52 · 72 No

j = −7 · 1373 · 20833 1225H2 52 · 72 No

43, g = 3 j = −218 · 33 · 53 1849A1, 1849A2 432 −43

67, g = 5 j = −215 · 33 · 53 · 113 4489A1, 4489A2 672 −67

163, g = 13 j = −218 · 33 · 53 · 233 · 293 26569A1, 26569A2 1632 −163

Remark: the Cremona labels are the representatives in this class of least conductor.

References: [4], pp. 78-80; [33]; [26]; [29], [38], [28], [34], [22], [23], [24], [25].

9.2. Proof of Theorem 9.4. Now that we have described all non-cuspidal Q-rational point on
X0(N), we can continue towards the proof of Theorem 9.4.

Lemma 9.6. Let E/Q and E′/Q be isomorphic elliptic curves (over C) with j(E) 6= 0 or 1728, and
let φ : E → E′ be an isomorphism. Then:

(1) E and E′ are isomorphic over Q or E′ is a quadratic twist of E.
(2) For all R ∈ E(Q), we have Q(x(R)) = Q(x(φ(R))).
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(3) Moreover, if Q(R)/Q is Galois, cyclic, and [Q(x(R)) : Q] is even, then the quotient [Q(φ(R)) :
Q]/[Q(R) : Q] = 1 or 2.

Proof. Let E and E′, respectively, be given by Weierstrass equations y2 = x3 + Ax + B and y2 =
x3 + A′x+ B′, with coefficients in Z. Since j(E) = j(E′) 6= 0, 1728, none of the coefficients is zero.
By [48], Ch. III, Prop. 3.1, the isomorphism φ : E → E′ is given by (x, y) 7→ (u2x, u3y) for some
u ∈ Q \ {0}. Hence A′ = u4A and B′ = u6B, and so u2 ∈ Q. Thus, either E ∼=Q E′ or E′ is the
quadratic twist of E by u.

Let R ∈ E(Q). If E ∼=Q E′ then Q(R) = Q(φ(R)) and the same holds for the subfields of the
x-coordinates, so (2) and (3) are immediate. Let us assume for the rest of the proof that E′ is the
quadratic twist of E by

√
d, for some square-free d ∈ Z. It follows that φ((x, y)) = (dx, d

√
d · y) and,

therefore, Q(x(φ(R))) = Q(d · x(R)) = Q(x(R)). This proves (2).
Let x = x(R) and y = y(R). Then Q(R) = Q(x, y) and Q(φ(R)) = Q(x,

√
d · y). The degree of

Q(x, y)/Q(x) is 1 or 2 because y is given by the Weierstrass equation y2 = x3 +Ax+B.

• If Q(x) = Q(x, y) = Q(R), then y ∈ Q(x) and Q(x,
√
d · y) = Q(x,

√
d). Thus, we have

[Q(φ(R)) : Q] = [Q(x,
√
d) : Q(x)] · [Q(x) : Q] and hence [Q(φ(R)) : Q]/[Q(R) : Q] = 1 or 2.

• Suppose Q(x, y)/Q(x) is quadratic. If Q(x,
√
d · y)/Q(x) is also quadratic, then we have

[Q(φ(R)) : Q]/[Q(R) : Q] = 1. Otherwise, assume that Q(x,
√
d · y) = Q(x) and we will

reach a contradiction. Indeed, in this case
√
d · y ∈ Q(x). Hence, there is z ∈ Q(x) such

that y =
√
d · z and we may conclude that Q(x, y) = Q(x,

√
d). It follows that

√
d ∈ Q(R).

Let K = Q(
√
d) ⊆ Q(R). Since Q(R)/Q is Galois and cyclic, K is the unique quadratic

extension of Q contained in Q(R). Moreover, Q(x)/Q is of even degree by assumption, and
Galois, cyclic because Q(x) ⊆ Q(R). Thus, K = Q(

√
d) ⊆ Q(x). It would follow that

Q(x, y) = Q(x,
√
d) = Q(x) which is a contradiction, since we have assumed that Q(R)/Q(x)

is quadratic.
This proves (3) and concludes the proof of the lemma. �

In the proof of Theorem 9.4, we will also use the following result about the field of definition of
torsion points for elliptic curves with complex multiplication.

Theorem 9.7 (Silverberg [47], Prasad-Yogananda [41]; see also [5]). Let F be a number field of
degree d, and let E/F be an elliptic curve with complex multiplication by an order O in the imaginary
quadratic field K. Let w = w(O) = #O× (so w = 2, 4 or 6) and let e be the maximal order of an
element of E(F )tors. Then:

(1) ϕ(e) ≤ wd (ϕ is Euler’s totient function).
(2) If K ⊆ F , then ϕ(e) ≤ w

2 d.
(3) If F does not contain K, then ϕ(#E(F )tors) ≤ wd.

Corollary 9.8. Let p = 11, 19, 43, 67, or 163. There is an elliptic curve E/Q with CM by Q(
√
−p)

and a non-trivial point P ∈ E[p] such that [Q(P ) : Q] = (p− 1)/2.

Proof. Let E/Q be the elliptic curve with CM by Z[
√
−p] and conductor NE = p2, whose j-invariant

and Cremona label are listed in Table 4. LetE/Q be given by aWeierstrass equation y2 = x3+Ax+B.
It is well known that E/Q has a Q-rational p-isogeny (see, for example, [33]) and, therefore, there is
a basis {P,Q} of E[p] such that the image G of ρE,p is a Borel subgroup and, more concretely, for all
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σ ∈ Gal(Q/Q) we have ρE,p(σ) = B(ψ(σ), b, c), where b, c ∈ Fp and ψ is a character of Gal(Q/Q).
By Theorems 9.3 and 9.7, we have that [Q(P ) : Q] = (p− 1)/2 or p− 1.

Suppose that [Q(P ) : Q] = p − 1. Then the character ψ : Gal(Q/Q) → F×p is surjective. Let

χ be the quadratic character
(
ψ
p

)
, where

(
·
p

)
is the Legendre symbol, and let E′ = Eχ be the

quadratic twist of E by χ. Then, j(E′) = j(E), so E′ also has CM by Q(
√
−p). Moreover, the

image of ρE′,p is also a Borel, with respect to some basis {P ′, Q′} and for all σ ∈ Gal(Q/Q) we
have ρE′,p(σ) = B(χ(σ)ψ(σ), b′, c′) for some b′, c′ ∈ Fp (see [48], Ch. X, §3, Example 2.4). Since
p ≡ 3 mod 4, the image of the character χψ has size (p−1)/2 and, therefore, [Q(P ′) : Q] = (p−1)/2
as desired. �

Now we are ready to prove our theorem.

Proof of Theorem 9.4. Let E/Q be an elliptic curve and let p = 11 or p ≥ 17 be a prime. Suppose
that there is an Fp-basis {P,Q} of E[p] such that the image of ρE,p is a Borel subgroup. Let R ∈ E[p]
be non-trivial.

By Theorem 9.3, if R ∈ E[p] but R /∈ 〈P 〉, then [Q(R) : Q] ≥ p. Hence, we may assume for the
rest of the proof that R = P . Moreover, by the classification of all non-cuspidal Q-points on X0(p),
as in Subsection 9.1, the prime p is 11, 17, 19, 37, 43, 67 or 163, and j(E) is one of the j-invariants
in Table 4.

When N = p is prime, every j-invariant in Table 4 with CM has complex multiplication by the
maximal order Oj in a quadratic imaginary field Kj , with discriminant 6= −3,−4. Therefore, wj =
#O×j = 2. By setting F = Q(R) in Theorem 9.7, we deduce that [Q(R) : Q] ≥ ϕ(p)/wj = (p− 1)/2,
as claimed.

It remains to treat the cases in Table 4, where N = p is prime and j does not have CM. Such
j-invariants are listed in Table 5, and we have also listed a polynomial q(x) ∈ Q[x] that has x(R)
as a root, where we have taken E to be the first Cremona label listed for each j in Table 4. Each
polynomial was calculated using the computer package Sage: q(x) is an irreducible factor of the p-th
division polynomial with smallest positive degree. By Lemma 9.6, the field Q(x(R)) is well-defined
up to isomorphism of E/Q. Hence, the degrees of the polynomials in Table 5 show that

[Q(P ) : Q] ≥ [Q(x(P )) : Q] ≥ (p− 1)/2

when p = 11 (any j), or p = 17 and j = −172 · 1013/2, or p = 37 and j = −7 · 1373 · 20833.
Only two cases are left to consider:
• Let p = 17 and j = −17 · 3733/217. The degree of Q(x(R))/Q is 4 and, using Sage, one can
show that Q(R) = Q(x(R), y(R)) is of degree 8, Galois over Q, cyclic, and generated by a
root of

x8 − 478x7 + 114898348x6 − 55311970256x5 + 4018578903430720x4

−1445438002496889856x3 + 51970642062386304974848x2

−9810682842681309121609728x+ 188274442063398593027946315776 = 0.

Since [Q(x(R)) : Q] = 4 is even, by Lemma 9.6, part (3), the degree of Q(R)/Q is 8 or 16 for
all elliptic curves with j-invariant j = −17 · 3733/217. Hence [Q(R) : Q] ≥ (p− 1)/2 = 8.
• Finally, let p = 37 and j = −7 · 113. The degree of Q(x(R))/Q is 6 and, using Sage, one can
show that Q(R) = Q(x(R), y(R)) is of degree 12,Galois over Q, cyclic, and generated by a
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root of

x12 + 91x11 − 510286x10 − 5285035x9 − 13216280x8 + 29005256x7 + 166375776x6

+155428049x5 − 180670105x4 − 273432740x3 − 9522366x2 + 10706059x+ 1010821 = 0.

Since [Q(x(R)) : Q] = 6 is even, by Lemma 9.6, part (3), the degree of Q(R)/Q is 12 or 24
for all elliptic curves with j-invariant j = −7 · 113. Hence [Q(R) : Q] ≥ (p− 1)/3 = 12.

This concludes the proof of Theorem 9.4. �

Table 5: Non-cuspidal Q-points on X0(p), genus > 0, p ≥ 11 prime, non-CM

N j-invariants Irreducible polynomial with root x = x(P )

11 j = −11 · 1313 x5 + 14x4 + 63x3 + 62x2 − 230x− 439

j = −112 x5 + 14x4 + 30x3 − 37x2 − 76x+ 1

17
j = −172 · 1013/2 x8 − 226x7 + 18372x6 − 543828x5 − 9242705x4 + 1127218758x3

−33006143963x2 + 437271444481x− 2252576338909

j = −17 · 3733/217 x4 + 482x3 + 1144x2 − 15809842x− 958623689

37 j = −7 · 113 x6 − 85x5 + 435x4 − 750x3 + 400x2 + 125x− 125

j = −7 · 1373 · 20833

x18 + 4540x17 + 9432590x16 + 11849891575x15 + 9976762132800x14

+5848587595725875x13 + 2353459307197093375x12 + 568092837455595073750x11

+10497166901552517018750x10 − 58167719763827256503515625x9

−29123957981672764259404562500x8 − 8642534874478733951747590312500x7

−1813067882488802075989763827437500x6

−280530629803275669434587526141796875x5

−32092317459295198700901755629420390625x4

−2653647761299569976280286239100456640625x3

−150512357183694499353889242415640015234375x2

−5251411022717638474379194466153432357421875x
−3148881707222283483037230006935969560314453125/37
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Bourbaki, Vol. 1993/94. Astérisque No. 227 (1995), Exp. No. 782, 4, 209-227.
[12] N. Elkies, Elliptic and modular curves over finite fields and related computational issues, in Computational Per-

spectives on Number Theory: Proceedings of a Conference in Honor of A.O.L. Atkin (D.A. Buell and J.T. Teitel-
baum, eds.; AMS/International Press, 1998), pp. 21-76.

[13] N. Elkies, Explicit Modular Towers, in Proceedings of the Thirty-Fifth Annual Allerton Conference on Commu-
nication, Control and Computing (1997, T. Basar, A. Vardy, eds.), Univ. of Illinois at Urbana-Champaign 1998,
pp. 23-32 (math.NT/0103107 on the arXiv).
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