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Abstract

Let K be a quadratic imaginary number field with discriminant DK 6= −3,−4 and
class number one. Fix a prime p ≥ 7 which is unramified in K. Given an elliptic
curve A/Q with complex multiplication by K, let ρA : Gal(K/K(µp∞))→ SL(2,Zp)
be the representation which arises from the action of Galois on the Tate module.
Herein it is shown that, for all but finitely many inert primes p, the image of a
certain deformation ρA : Gal(K/K(µp∞)) → SL(2,Zp[[X]]) of ρA is “as large as
possible”, that is, it is the full inverse image of a Cartan subgroup of SL(2,Zp). If p
splits in K, then the same result holds as long as certain Bernoulli-Hurwitz number
is a p-adic unit which, in turn, is equivalent to a prime ideal not being a Wieferich
place. The proof rests on the theory of elliptic units of Robert and Kubert-Lang,
and on the two-variable main conjecture of Iwasawa theory for quadratic imaginary
fields.
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1 Introduction

Fix a prime p ≥ 7, let K be a number field and write K̃ for the extension of K
generated by the roots of unity in K of p-power order (i.e. K̃ = K(µp∞)). Let
A be an elliptic curve over K with j(A) 6= 0, 1728. In [13], Rohrlich obtains a
representation

ρA : Gal(K/K̃) −→ SL(2,Zp[[X]])

such that ρA := ρA|X=0 : Gal(K/K̃)→ SL(2,Zp) is equivalent to the natural

representation of Gal(K/K̃) on Tp(A), the Tate module of A. In light of the

Email address: alozano@math.cornell.edu (Álvaro Lozano-Robledo).
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well-known results about the image of ρA due to Deuring, Serre, Tate et al.
([3], [19], [18]), one would naturally want to know how large is the image of
the representation ρA.

Let ρ̃A : Gal(K/K̃) → SL(2,Fp) be the representation induced by the action
of Galois on the points of order p on A. In [14], Rohrlich proved in the case
K = Q that if ρ̃A is surjective and νp(j(A)) = −1 then ρA is surjective,
where νp is the usual p-adic valuation on Q. This result has been generalized
in [8] to elliptic curves defined over arbitrary number fields with non-integral
j-invariant at a prime above p. In the present paper, we are interested in the
complex multiplication case.

From now on, we let K be a quadratic imaginary number field with discrimi-
nant DK 6= −3,−4 and class number hK = 1. Fix a prime p ≥ 7 which is not
ramified in K. Given an elliptic curve A/Q with complex multiplication by K
(and precisely by the ring of integers OK) the theory of complex multiplica-
tion describes the image of the map ρA : Gal(K/K̃)→ SL(2,Zp) as a Cartan
subgroup C′ of SL(2,Zp), unique up to isomorphism. We write K(p) for the
ray class field of K of conductor pOK , and let hp be the class number of K(p).
In a previous article, the author proved the following:

Theorem 1.1 ([9], Thm. 1.1) If p - hp then the image of ρA is “as large as
possible”, that is, it is the full inverse image of C′ under the natural projection
πX : SL(2,Zp[[X]])→ SL(2,Zp) sending X 7→ 0.

The aim of this article is to remove the hypothesis that p - hp. In order to do
this, we will make use of Kummer-type criteria for quadratic imaginary fields
developed by G. Robert (in [12]) and R. Yager (in [21]), in terms of special
values of L-functions (or alternatively, in terms of Bernoulli-Hurwitz numbers
as defined below). Moreover, we will use the two-variable “main conjecture”
(now a Theorem by [16]) of Iwasawa theory for imaginary quadratic fields to
improve the results of [21] by working out an eigenspace-by-eigenspace Kum-
mer’s criterion (see Theorem 6.6 and 6.7 below for the precise statements).

Let A/Q be as above and let A′/Q be another elliptic curve defined over K,
with complex multiplication by OK and minimal conductor among all elliptic
curves with this property. Notice that, under our assumptions, A′ is a certain
quadratic twist of A. Let L be the period lattice of A′, and choose an element
Ω∞ ∈ L such that L = Ω∞OK (the existence of Ω∞ is guaranteed by the fact
that hK = 1). Let ψ be the Grössencharacter attached to the curve A′/K and

write L(ψ
k
, s) for the primitive complex Hecke L-function attached to ψ

k
for

each integer k ≥ 1. Let e be the number of roots of unity in K. Damerell’s
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theorem shows that the Bernoulli-Hurwitz numbers defined by

BHj
k :=

 2π√
|DK |

j e · L(ψ
k+j

, k)

Ωk+j
∞

, k ≥ 1, j ≥ 0

belong to K and if 0 ≤ j < k they belong to K. If the prime p is split in
K and (p) = ℘℘′, Yager has shown that the numbers BHj

k belong to K℘, the
completion of K at ℘, and are ℘-integral if 0 ≤ j ≤ p− 1 and 1 < k ≤ p (see
[22]). For even k, the numbers BH0

k coincide with the usual values of Eisenstein
series Gk(L), studied by Hurwitz. Our terminology follows that of Katz (see
[6]). The main result of this article is:

Theorem 1.2 Let p ≥ 7 be unramified in K and suppose one of the following
holds:

(1) The prime p is inert in K and BH0
2 is a p-adic unit;

(2) The prime p is split in K and the numbers BH0
2, BHp−2

p are p-adic units.

Then the image of ρA is as large as possible, that is, it is the full inverse image
of a Cartan subgroup of SL(2,Zp). In particular, the image of ρA is as large
as possible for all but finitely many inert primes p.

For p ≥ 7, the number BH0
2 = G2(L) is not a p-adic unit only in two particular

cases, namely (DK , p) = (−163, 181) and (−67, 19). Furthermore, we provide
(a) explicit recursive formulas to calculate all Bernoulli-Hurwitz numbers (see
Remark 6.17) and (b) a simple criterion to determine whether BHp−2

p is a
p-adic unit in terms of Wieferich places of K, which we describe next. Let p
be a split prime in K (of class number 1) and let π and π′ be respectively
generators of the prime ideals ℘ and ℘′ of OK lying above p. Let ν℘ be the
usual ℘-adic valuation on K. We say that ℘ is a Wieferich place (in base π′) if
ν℘((π′)p−1 − 1) > 1 (cf. [20]). Notice that one always has ν℘((π′)p−1 − 1) ≥ 1.

Theorem 1.3 (Also Corollary 6.9) Let p be a prime that splits in K. The
Bernoulli-Hurwitz number BHp−2

p is a p-adic unit if and only if ℘ = (π) is not
a Wieferich place in base π′.

In proving Theorem 1.3 we will actually show that the characteristic power
series of a certain Iwasawa Λ-module is a unit if and only if ℘ is not a Wieferich
place (see Corollary 6.9). Wieferich places seem to be rather sparse (see [20]
for known results). In fact, a naive heuristic argument suggests that, for each
quadratic field K, there should be about 1

2
log(log x) split primes p ≤ x such

that a prime ℘ above p is a Wieferich place in base π′. A computation reveals
that in the range 7 ≤ p ≤ 50000 there is at most one Wieferich place for all
quadratic imaginary fields K (of class number 1 and DK 6= −3) and there
are no Wieferich places for Q(

√
−2) and Q(

√
−11) in the given range (see the
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table above Remark 6.17). Hence, for a fixed elliptic curve A/K, the image
of the representation ρA is as large as possible for all primes 7 ≤ p ≤ 50000
except for, perhaps, two primes.

Remark 1.4 Theorems 1.2 and 1.3 show that the set of exceptional primes
for which the image of ρA may not be as large as possible is rather sparse (at
least heuristically). In fact, the conditions of Theorem 1.2 are sufficient but not
necessary (as a consequence of the fact that Kummer’s criterion for K only
provides sufficient conditions for the class number of K(p) being prime to p, in
the split case), and the image of ρA may be as large as possible even for some
of those primes excluded by the theorems. As an example, let K = Q(

√
−11)

and p = 5. Then BH3
5 = 135/2 is not a 5-adic unit but a calculation with [10]

shows that the class number of K(5) is identically 1. See also [12], Appendix
B, for other examples where some Bernoulli-Hurwitz numbers vanish modulo
p but the class number of the appropriate ray class field is prime to p.
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2 Surjectivity of a Galois Representation

Let p ≥ 7 be unramified in K. For any ring R, let PR : SL(2, R)→ PSL(2, R)
be the natural projection. We write C for the image of C′ under PZp , and

the ring Zp[[X]] will be denoted by Λ. Let PρA = PΛ ◦ ρA : Gal(K/K̃) −→
PSL(2,Zp[[X]]), then a simple lemma (see [9], Lemma 2.1) reduces the proof
of Theorem 1.2 to showing that the image of PρA is the full inverse image of
C under the natural projection PπX : PSL(2,Zp[[X]]) −→ PSL(2,Zp) which
sends X to 0.

Lemma 2.1 Let A/Q be an elliptic curve and let A′/Q be a quadratic twist
of A. Suppose that the image of ρA is the full inverse image of C under the
natural projection PπX . Then, ρA′ enjoys the same property, i.e. the image of
ρA′ is the full inverse image of Im ρA′ under πX .
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PROOF. Let A′ be a quadratic twist of A by the quadratic character χ.
Then, ρA′ ∼= ρA ⊗ χ. Therefore

PρA ∼= PρA′ and PρA ∼= PρA′ . (1)

Suppose that the image of ρA is the full inverse image of Im ρA under πX .
Then, the image of PρA is the full inverse image of ImPρA under PπX and
the same property holds for A′, by Eq. (1). Thus, by Lemma 2.1 of [9], the
image of ρA′ is the full image of Im ρA′ under πX . This concludes the proof of
the Lemma.

Hence, by the previous Lemma, we may assume that A/Q is an elliptic curve
with complex multiplication by OK and minimal conductor with this property,
because any other elliptic curve with the same properties will be a quadratic
twist of A.

Notice that PρA is a continuous group homomorphism, therefore the image
is a closed subgroup of PSL(2,Zp[[X]]). The kernel of PρA determines a fixed

field `, in particular Gal(`/K̃) ↪→ PSL(2,Zp[[X]]). For i ≥ 1, let `i ⊆ ` be the
fixed field determined by the kernel of the reduction map

Gal(`/K̃) ↪→ PSL(2,Zp[[X]])→ PSL(2,Zp[[X]]/(p,X)i).

In [9], the author showed that in order to show that the image of PρA is as large
as possible it suffices to prove that the image of PρA on the “second layer”, i.e.
on the group PSL(2,Λ/(p,X)2), is the inverse image of a full Cartan subgroup
(this can be shown by using an argument involving the Frattini quotient of
the kernel of PπX). It follows that in order to prove Theorem 1.2, it is enough
to show that [`2 : `1] = p4. See [9], Section 2, for further details.

3 Siegel Functions and Elliptic Units

Theorem 2 in [14] provides an explicit description of the extension `2/`1 which
will be one of the key ingredients to prove that [`2 : `1] = p4. Before stating this
theorem we introduce the Siegel functions. We follow Robert and Kubert-Lang
in defining invariants as in [11] and [7], respectively.

Definition 3.1 Let L = 〈w1, w2〉 be a lattice in C.

(1) The Siegel functions g12 are defined by

g12(z, L) = k12(z, L)∆(L)
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where k(z, L) = eη(z,L)z/2σ(z, L) is a Klein form. In particular, g12(z, L)
is an even function (see [7] p. 26-29 for the precise definitions).

(2) Let I be the free abelian group on integral ideals of K which are prime to
6p. We express a ∈ I as formal sums a =

∑
A a(A)A with a(A) ∈ Z for

all ideals A ⊆ OK, and define the degree and norm of a by the formulas
deg(a) =

∑
A a(A), N(a) =

∑
A a(A)N(A) where N(A) = |OK/A| denotes

the absolute norm of the ideal A. Also, for a ∈ I write:

g12
p (a;OK) :=

∏
A=(α)

g12

(
α

p
,OK

)a(A)

.

The primitive Robert group R∗p is the group of all elements:

g12
p (a;OK), a ∈ I such that deg(a) = 0, N(a) = 0.

Let K(p) be the ray class field of conductor p of K, and let Ep be the group
of units in the ring of integers of K(p). Notice that Ep contains µp, the group
of pth roots of unity (because µp ⊆ K[µp] ⊆ K(p)). For p ≥ 5, the group of
Robert units also contains µp (see [9], Lemma 4.3). The following is a theorem
due to Robert ([11]), although we are using the notation of Kubert-Lang (for
details about the dictionary of invariants, see [9], Theorem 4.5).

Theorem 3.2 The Robert groups of elliptic units R∗p is a subgroup of Ep.
Moreover, the index is given by

[Ep : R∗p] = λ · hp

where λ = 2α · 3β, for some non-negative integers α, β, and hp is the class
number of K(p).

We also introduce several structure modules as in [14] and [9].

Definition 3.3 Let p ≥ 7 be a prime and define R = F2
p\{(0, 0)}.

(1) M is the Z-module of all functions m : R→ Z with m(r) = m(−r).
(2) We write N for the Z-submodule of M consisting of all those m ∈ M

that reduce modulo p to a function defined by a homogeneous polynomial
of degree two over Fp.

(3) We define a submodule Q consisting of all elements of M which satisfy the
“quadratic relations” of Kubert-Lang (see [7], p. 59), i.e. m ∈M belongs
to Q if and only if

∑
r∈Rm(r)n(r) ≡ 0 mod p for all n ∈ N . Note that

pM ( N ( Q (for the last inclusion, see Proposition 3 of [14]).
(4) Let K = Q(

√
−d) and let τ be a complex number in the upper half plane,

defined by:

τ =


√
−d , if − d ≡ 2, 3 mod 4,

1+
√
−d

2
, if − d ≡ 1 mod 4.
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Let ι : Fp × Fp → OK/pOK be the bijection defined by:

ι(r1, r2) =

r1τ + r2, if p is inert in K;

r1π + r2π
′, if p splits and pOK = ℘ · ℘′;

where π is a fixed generator of ℘ and π′ is the complex conjugate of π.
Let I : Fp × Fp → OK be a fixed lift of ι. For r ∈ R we define:

gr = g12

(
I(r)

p
,OK

)
.

Notice that if I ′ is a different lift of ι, then for any r ∈ R, the values
g12( I(r)

p
,OK) and g12( I

′(r)
p
,OK) only differ by a pth root of unity (for this

see [7], Remark on p. 30).
(5) For every m ∈M , we define a product of values of Siegel functions by:

gm =
∏
r∈R

gm(r)
r .

(6) If m ∈M , the degree and the norm of m are defined by:

deg(m) =
∑
r∈R

m(r), Norm(m) = N(m) =
∑
r∈R

m(r)N(I(r))

Define, also, the following submodules of M :

M0 = {m ∈M | deg(m) = 0}, M0,p = {m ∈M0 | Norm(m) ≡ 0 mod p}

Q0 = Q ∩M0, N0 = N ∩M0.

From the definitions, Gal(`1/K̃) is isomorphic to a Cartan subgroup of PSL(2,Fp),
so `1 corresponds to the extension of K̃ obtained by adjoining the x-coordinates

of p-torsion points on A. Therefore `1 = K̃(p) = (K(p))(µp∞) where K(p), as
before, denotes the ray class field of K of conductor (p). In particular, µp ⊂ `1.
We summarize the most relevant results of [14] and [9] in the following theo-
rem:

Theorem 3.4 With the notation of the previous definitions:

(1) (Rohrlich, [14], Thm. 2) The extension of fields `2/`1 (as defined in Sec-
tion 2) is generated by pth roots of values of Siegel units. More precisely,
`2 = `1({(gm)1/p : m ∈ N}).

(2) ([9], Proposition 5.4) Let p be inert in K. If q ∈ Q then gq ∈ K(p) and
if m ∈M0,p then gm is an elliptic unit in R∗p. Furthermore, the map

Ψ0 : M0,p/pM0,p−→R∗p/(µp(R
∗
p)
p)

m+ pM0,p 7→ gm mod µp(R
∗
p)
p
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is an isomorphism of Fp-modules.
(3) ([9], Remark 3.12, Lemma 3.15) The natural inclusion Q0 ⊂ M0,p as

Z-modules induces a map γ : Q0/pQ0 → M0,p/pM0,p. There is an iso-
morphism of Fp-modules N/pQ ∼= N0/pQ0, and moreover, the image of
N0/pQ0 via the map γ has size p4.

The definition of Ψ0 in the split case is quite a bit more delicate and some new
definitions are needed. Let R = R/{±1} and let ι be the map defined in Def.
3.3.(4). For r ∈ R, the class of r in R is denoted by r̄. For each r̄ in R, let us
fix a principal integral ideal Ar̄ of OK relatively prime to 6 and not divisible
by p, such that Ar̄ = (a) with a ∈ OK and a ≡ ±ι(r) mod p. For an integral
ideal B = (b) we define r̄(B) to be the element r̄ of R such that b ≡ ±ι(r)
mod p. We denote by R℘ the set of those r̄ ∈ R such that ℘ divides Ar̄, and
we define R℘′ similarly. Last, R

∗
will denote the set of those r̄ ∈ R such that

Ar̄ is relatively prime to p.

Next we describe the distribution relations satisfied by the elliptic units (as in
[7], Thm. 1.4, p. 237) in terms of elements of M . The symbol 1r̄ will denote
the characteristic function R→ Z for the elements ±r, i.e. 1r̄(s) = 1 if s = ±r
and is 0 otherwise.

Definition 3.5 (1) If p is split in K, we define elements of M by:

m℘ := 2
∑
r̄∈R℘

1r̄, m℘′ := 2
∑
r̄∈R℘′

1r̄

mβ,℘ :=
p−1∑
i=0

1(β,i) − 1(βc℘,0), mβ,℘′ :=
p−1∑
i=0

1(i,β) − 1(0,βc℘)

where β runs through a set of representatives of F∗p/{±1} and c℘ ≡ π+π′

mod p. For χ : F∗p/{±1} → Z∗p we also define elements of M = M ⊗ Zp

by:

mχ,℘ =
∑
β

χ(β)mβ,℘

where the sum is over a set of representatives of F∗p/{±1}, and let mχ,℘′

be defined analogously.
(2) If p is inert in K simply put Sp = R∗p. If p is split in K with pOK = ℘℘′

and ℘ = (π), we define Sp to be the Robert group of p-units, i.e. Sp
is the multiplicative group generated by R∗p and all powers of π and π′.
Similarly, if p is inert, write E ′p for the group of units Ep in K(p). If p is
split then we define E ′p to be the group of p-units in K(p).

Theorem 3.6 ([9], §6) Let χ : F∗p/{±1} → Z∗p be a non-trivial character and
let χ0 be the trivial character. If p is split in K then the elements of M given
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by

mχ,℘, mχ,℘′ , mπ :=
p− 1

2
m℘ −mχ0,℘, mπ′ :=

p− 1

2
m℘′ −mχ0,℘′

belong to M0,p. Furthermore:

(1) The map Ψ0 : M0,p/pM0,p → Sp/(µp(Sp)
p) given by m + pM0,p 7→ gm

mod µp(Sp)
p is a well-defined homomorphism of Fp-vector spaces.

(2) If p is split and we let P be the subspace generated by the elements mπ,mπ′

in M0,p/pM0,p, then Ψ0 restricted to P is injective and the image of P via
Ψ0 is the subspace of Sp/(µp(Sp)

p) generated multiplicatively by π, π′.
(3) If p is inert, the map Ψ0 is injective. Otherwise, if p splits, the p − 3

elements in the set

{mχ,℘, mχ,℘′ | χ : F∗p/{±1} → Z∗p non-trivial }

are linearly independent modulo pM0,p. Let H be the Zp-module spanned
by them. The image of H in M0,p/pM0,p, denoted by H, is precisely the
kernel of Ψ0.

(4) The image of N0/pQ0 in M0,p/pM0,p, via the map γ of Thm. 3.4, has
trivial intersection with the kernel H of Ψ0.

Therefore, the combination of results in the previous theorem shows that in
order to prove that [`2 : `1] = p4 in the inert case, it suffices to show that the
image of the composition

Ψ: N0/pQ0 →M0,p/pM0,p → Sp/(µp(Sp)
p)→ E ′p/(µp(E ′p)p) ↪→ `×1 /(`

×
1 )p

is 4 dimensional, where E ′p/(µp(E ′p)p)→ `×1 /(`
×
1 )p is the natural map, which one

easily checks to be injective. Notice that Ψ simply sends the coset of n ∈ N0

to the coset of gn in `×1 . Using Theorems 3.4 and 3.6, we see that to show
Theorem 1.2 it suffices to prove the following:

Proposition 3.7 Assume hypothesis (1) or hypothesis (2) of Theorem 1.2
according as p is inert or split in K. Then the image of N0/pQ0 in Sp/(µp(Sp)

p)
injects into the group E ′p/(µp(E ′p)p). Thus, [`2 : `1] = p4.

By Theorem 3.2, when p - hp, the map Sp/(µp(Sp)
p) → E ′p/(µp(E ′p)p) is an

injection, and we obtain Theorem 1.1.
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4 The Galois Action

Let G = Gal(K(p)/K) ∼= (OK/pOK)×/{±1}. We define a group action of G
on the set R := R/{±1} by

α · r = ι−1(α · ι(r))

for α ∈ (OK/pOK)×/{±1}, where ι is the bijection of Definition 3.3. We
extend the action of G to M by defining α · m(r) = m(α · r), for m ∈ M .
Notice that M0 is a Z[G]-submodule of M . Moreover:

N(α ·m) =
∑
r∈R

α ·m(r)N(I(r)) =
∑
r∈R

m(α · r)N(I(r))

=
∑
r∈R

m(r)N(α−1I(r)) = N(α−1)N(m)

Thus, M0,p is also a Z[G]-submodule of M . It is easy to see from the definitions
that N and Q are all Z[G]-submodules.

The primitive Robert group of units also carries a G action. To see this, let
(OK/p)×/{±1} → Gal(K(p)/K) be the isomorphism given by the Artin map
(α)→ ((α), K(p)/K). The action of Galois on values of the Siegel function is
as follows (see [7]):

g12

(
β

p
,OK

)((α),K(p)/K)

= g12

(
α · β
p

,OK
)

(2)

It is clear from equation (2) that if u = g12
p (a;OK) belongs to R∗p for some

a =
∑

A a(A)A, then

u((α),K(p)/K) = (g12
p (a;OK))((α),K(p)/K) = g12

p (α · a;OK)

where α · a =
∑

A a(A)αA. Since deg(α · a) = deg(a) = 0 and N(α · a) =
N(α)N(a) = 0, we conclude that uα belongs to R∗p. Thus (R∗p)

G = R∗p.

Lemma 4.1 The homomorphism Ψ0 : M0,p/pM0,p → Sp/(µp(Sp)
p) of Theo-

rem 3.6.(1), is a homomorphism of Fp[G]-modules. Consequently, the homo-
morphism Ψ: N0/pQ0 → `×1 /(`

×
1 )p is also compatible with the G-action.

PROOF. It suffices to show that Ψ0 is compatible with the G action. Recall
that Ψ0(m + pM0,p) = gm · (µp(Sp)

p). Hence, for all m ∈ M0,p and α ∈
(OK/p)×/{±1}:

(gm)[α] = (
∏
r∈R

gm(r)
r )[α] =

∏
r∈R

(gα·r)
m(r) = gα·m
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as desired, where [α] = ((α), K(p)/K) for simplicity.

Lemma 4.2 The image of N0/pQ0 in M0,p/pM0,p is isomorphic to the direct
sum N/pM⊕pM0/pM0,p of Fp[G]-submodules. Furthermore, the 1-dimensional
submodule pM0/pM0,p injects into `×1 /(`

×
1 )p.

PROOF. The decomposition of the image of N0/pQ0 in M0,p/pM0,p follows
from the decomposition N/pQ ∼= N/pM ⊕ pM/pQ (cf. [14]) and the fact that
N/pQ ∼= N0/pQ0. Moreover, it is easy to check that N/pM and pM0/pM0,p

are both Fp[G]-modules.

Finally, in [14], Rohrlich shows that the extension field `pM of `1 defined by
`pM = `1({(gm)1/p : m ∈ pM}) is the extension obtained by adjoining to
`1 the x-coordinates of A[p2], the p2-torsion of the elliptic curve A. Thus,
Gal(`pM/K̃) is isomorphic to a non-split Cartan subgroup of PSL(2,Z/p2Z).
As a consequence `pM/`1 is an extension of degree p, and pM0/pM0,p injects
into `×1 /(`

×
1 )p.

By Lemma 4.1, the map Ψ is a homomorphism of Fp[G]-modules. In particular,
the kernel of the map M0,p/pM0,p → `×1 /(`

×
1 )p is an invariant Fp[G]-submodule.

By Lemma 4.2, the Fp[G]-submodule pM0/pM0,p injects into `×1 /(`
×
1 )p. There-

fore, in order to prove thatN0/pQ0 also injects into `×1 /(`
×
1 )p, it suffices to show

that its Fp[G]-submodule isomorphic to N/pM injects via Ψ. We will write
S(p) := Sp/(µp(Sp)

p), E (p) := E ′p/(µp(E ′p)p) and let B(p) be the kernel of the

natural Fp[G]-map S(p) → E (p). We will also write N (p) := Ψ0(N/pM) ⊂ S(p).
Since Ψ0 is injective on N0/pQ0 (by part (4) of Thm. 3.6) we conclude that
N (p) is a 3-dimensional Fp[G] submodule of S(p). As a consequence, in order
to prove Proposition 3.7, it suffices to show:

Lemma 4.3 The intersection of N (p) with the kernel B(p) is trivial.

5 Decomposition using Orthogonal Idempotents

If χ is an irreducible character of G = (OK/(p))×/{±1} then B(p)
χ is the

corresponding χ-component. Remember that B(p) is defined to be the kernel
of the natural map S(p) → E (p) and, as a consequence of Theorem 3.2, one
has the index [E ′p : Sp] = λ · hp with p - λ. Thus, in order to show that p - hp,
the class number of K(p), it suffices to show that B(p)

χ = 0 for all irreducible
characters χ. This is precisely the strategy followed by Robert to prove a
Kummer criterion for quadratic imaginary fields.
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Thus, we shall need to understand the representations of G. The following
lemma describes the irreducible representations over Fp of the group G =
(OK/(p))×/{±1} for p ≥ 5 inert in K.

Lemma 5.1 Let p ≥ 5 be inert in K and let G = (OK/(p))×/{±1}. Let
σk : G → (OK/(p))× be defined such that σk(α) = αk, with k even and 2 ≤
k ≤ p2 − 1. The irreducible representations of G over Fp, up to equivalence,
are:

(1) σk with (p+ 1)|k: in this case σk : G→ F×p is a group character (we will
also denote it by χk). Notice that αp+1 ≡ N(α) mod p. Thus, for k ≡ 0
mod p+ 1, the map σk is given by

α 7→ (N(α))
k

p+1 mod p.

(2) σk with (p+ 1) - k: in this case σk : G→ GL(OK/(p)) and the character
of σk is χk(α) = Trace(σk(α)) = αk + αpk ≡ 2<(αk) mod p.

The previous lemma is stated in [12], Lemme 9, p. 305. Let χk, for 2 ≤ k ≤
p2 − 1, be the irreducible character attached to the representation σk. The
degree of χk is 1 when (p + 1)|k and 2 otherwise. We define a system of
orthogonal idempotents:

1χ =
1

|G|
∑
g∈G

χ(g−1)g ∈ Fp[G]

so that
∑
k 1χk

= 1 ∈ Fp, where the sum is over all even k as above. Moreover,
if S is an Fp[G]-module, we define submodules Sχ := 1χ · S and one has a
direct sum decomposition S = ⊕χSχ.

The following lemma describes the irreducible representations of G in the split
case, when (p) = (π)(π′). As before, let A[α] be the kernel of multiplication
by α ∈ OK on A. Also, we define A[α∞] =

⋃
n≥1A[αn].

Lemma 5.2 ([22], p. 415) Let G∞ = Gal(K(A[p∞])/K) and let κ1 : G∞ →
Z×p , κ2 : G∞ → Z×p be the characters giving the actions of G∞ on A[π∞] and
A[π′∞] respectively. Let χ1 (resp. χ2) be the restriction of κ1 (resp. κ2) to
∆ = Gal(K(A[p])/K) (here we identify ∆ with the maximal finite subgroup
of G∞). Then χ1 and χ2 generate Hom(∆,Z×p ). Moreover, if S is any Zp[∆]-
module and we define S(i1,i2) to be the submodule of S on which ∆ acts via
χi11 χ

i2
2 , then we have a canonical decomposition

S =
⊕

i1,i2 mod (p−1)

S(i1,i2).
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6 Kummer’s Criterion and Bernoulli-Hurwitz Numbers

6.1 The inert case

Let L ⊂ C be the lattice associated to the elliptic curve A and let Gk be the
Eisenstein series of weight k > 2. We recall the reader that, in Section 2, we
restricted our attention to the elliptic curve A/Q with complex multiplication
by OK and of minimal conductor with this property.

The Hurwitz numbers attached to the elliptic curve A are the numbers:

Gk(L) =
∑

w∈L\{0}

1

wk

where the sum is over all the non-zero elements of L, and k > 2 is divisible
by e, the number of roots of unity in the field of complex multiplication K
(in our case e = 2, so k is even). The definition of G2(L) is of course more
delicate:

G2(L) = lim
t→0+

∑
w∈L\{0}

1

w2|w|2t

and we refer the reader to [24] for further details. The numbers G2(L) are
given in the following table:

DK −3 −4 −7 −8 −11 −19 −43 −67 −163

G2(L) 0 0 1/2 1/2 2 2 12 2 · 19 4 · 181

The values Gk(L) can be reinterpreted as special values of Hecke L-functions
(we use the notation BH0

k of the introduction).

Proposition 6.1 Let K be a quadratic imaginary field of class number hK =
1 and let k be an integer divisible by e, the number of roots of unity in K.

Then L(ψ
k
, k)/Ωk

∞ is rational and BH0
k = e · L(ψ

k
, k)/Ωk

∞ = Gk(L).

PROOF. By the properties of the Grössencharacter, if k ≡ 0 mod e then
ψk(A) = αk where α is any generator of A. Also recall that L = Ω∞OK and
OK is assumed to be a PID, so every non-zero ideal has exactly e generators.
Then, for k ≥ 4 with e|k, one has:

Gk(L) =
∑

w∈L\{0}

1

wk
=

∑
α∈OK\{0}

1

(Ω∞α)k

=
e

Ωk
∞

∑
A=(α)6=(0)

αk

N(A)k
=

e

Ωk
∞
L(ψ

k
, k).

13



And one can proceed similarly in the case k = 2:

G2(L) = lim
t→0+

∑
w∈L\{0}

1

w2|w|2t
= lim

t→0+

∑
α∈OK\{0}

1

(Ω∞α)2|Ω∞α|2t

= lim
t→0+

e

Ω2+2t
∞

∑
A=(α) 6=(0)

α2

N(A)2+t
= lim

t→0+

e

Ω2+2t
∞

L(ψ
2
, 2 + t)

=
e

Ω2
∞
L(ψ

2
, 2).

where, to calculate the limit, we have used the fact that L(ψ
2
, s) has an ana-

lytic continuation to the whole complex plane.

Lemma 6.2 ([12], Cor. 14, Prop. 16) Let p ≥ 5 be inert in K and let
0 < k < p2 − 1 be even. If k 6= p + 1 then Gk(L) is p-integral. If k = p + 1
then pGk(L) is p-integral and in fact, it is a p-unit (pGk(L) 6≡ 0 mod p).

Next, we state Robert’s theorem, specialized to our case. Recall that we as-
sumed thatK is a quadratic imaginary field of class number one, andDK 6= −3
or −4.

Theorem 6.3 (Robert, [12]) Let p ≥ 5 be an inert prime of K and let
0 < k < p2 − 1 be even. Suppose that:

(1) If (p+ 1)|k but k 6= p+ 1, then Gk(L) 6≡ 0 mod p;
(2) If (p + 1) - k, then Gk(L) 6≡ 0 mod p or Gp(k)(L) 6≡ 0 mod p, where

0 < p(k) < p2 − 1 is an even integer congruent to pk mod p2 − 1.

Let χk be the irreducible character attached to the representation σk. Then
B(p)
χk

= 0. Hence, if every even k satisfies the condition above, then p - hp.

The previous result is a combination of the following results in [12]: Theorem
1, Lemma 27 and Proposition B.1. Notice that in our case hK = 1.

Corollary 6.4 Let K be as before. Let p ≥ 5 be inert in K (and p 6= 181 if
DK = −163). Then B(p)

χ2
= B(p)

χp+1
= 0.

PROOF. By Lemma 6.2, pGp+1(L) is invertible modulo p, thus, by the The-
orem, the component B(p)

χp+1
is trivial.

For the case k = 2, one has the well-known values of G2(L) (see the table
above). Notice that the only divisors larger than 3 are p = 19, which splits
for DK = −67 and p = 181 which is inert for DK = −163. However, we have
excluded the pair p = 181, DK = −163 from our main theorem.
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Remark 6.5 After some calculations, one can check that for DK = −163, in
fact,

G2(L) ≡ G362(L) ≡ 0 mod 181,

so we cannot use part (2) of Theorem 6.3 to conclude that B(181)
χ2

= 0.

6.2 The split case

Let p be split and let ℘, ℘′ be the primes of K above p. Even though Robert
proved a Kummer-type criterion for the class number of the ray class field
K(℘), his work does not cover the field K(p). However, R. Yager took care of
this case in [21]. In this subsection we make use of Yager’s work on the “two-
variable main conjecture” ([22]) to show an eigenspace-by-eigenspace analysis
of the class number of K(p) similar to that of Theorem 6.3.

Theorem 6.6 Suppose that k+j ≡ 0 mod 2 with k > j ≥ 0 and suppose that
BHj

k is a p-adic unit. Then B
(p)
(i1,i2) = 0, where (i1, i2) ≡ (k,−j) mod (p− 1).

Before we give the proof of the theorem, we need to introduce the key in-
gredient, which is Theorem 30 of [22]. Let A/K be as before, let p ≥ 5 be
a split prime of K, put Kn = K(A[pn+1]) and K∞ =

⋃
n≥0Kn. We write

Γ = Gal(K∞/K0) for the Galois group of K∞ over K0, and ∆ = Gal(K0/K).
Then G∞ = Gal(K∞/K) = Γ × ∆. Let Un,ν be the local units of the com-
pletion of Kn at a prime ν lying above ℘ which are congruent to 1 modulo
ν, and put Un =

∏
ν|℘ Un,ν . Let R∗p,n be Robert’s group of elliptic units for

Kn. We denote by R∗1p,n the subgroup of R∗p,n formed by those elements which
are congruent to 1 modulo each prime of Kn lying above ℘ and denote by
R∗1p,n their closure in Un. As in Lemma 5.2, we write (Un/R∗1p,n)(i1,i2) for the

eigenspace of Un/R∗1p,n on which ∆ acts via χi11 χ
i2
2 . Let us define:

Y(i1,i2) = lim←−(Un/R∗1p,n)(i1,i2)

where the inverse limit is taken relative to the norm maps. Let Λ = Zp[[T1, T2]]
be a ring of formal power series in two variables. Then Y(i1,i2) can be regarded
as a Λ-module as follows. Choose a topological generator u of (1 + pZp)

× and
let γ1 and γ2 be topological generators of Γ such that κ1(γ1) = κ2(γ2) = u and
κ1(γ2) = κ2(γ1) = 1 (the definition of κ1 and κ2 is in the statement of Lemma
5.2). The group Y(i1,i2) can be endowed with a unique Λ-module structure such
that γ1y = (1 + T1)y and γ2y = (1 + T2)y for all y ∈ Y(i1,i2). In what follows,
O∞℘ will denote the ring of integers of a certain unramified extension of the
completion of K at ℘ (as defined in [22], p. 419).

Theorem 6.7 ([16]; [22], Thm. 30) Let i1 and i2 be integers modulo p−1.
Then there is a power series G(i1,i2)(T1, T2) ∈ O∞℘ [[T1, T2]] such that:
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(1) For each pair of integers k, j with k > j ≥ 0 and (k,−j) ≡ (i1, i2)
mod p− 1 one has

G(i1,i2)(u
k − 1, uj − 1) =

(
1− ψ(℘)k+j

N℘j+1

)(
1− ψ(℘′)k+j

N℘′k

)
(k − 1)! · BHj

k

Ω
(k+j)
℘

where Ω℘ is a certain ℘-adic unit in K℘, the closure of the completion of
K at ℘. Moreover, there is an element G(i1,i2)(T1, T2) ∈ Λ which generates
the same ideal in O∞℘ [[T1, T2]] as G(i1,i2).

(2) If (i1, i2) 6≡ (1, 1) mod p− 1 then Y(i1,i2) is isomorphic to Λ/G(i1,i2)Λ, as
Λ-modules.

(3) If (i1, i2) ≡ (1, 1) mod p − 1 then there is an integer M ≥ 0 such that
Y(1,1) is isomorphic to H/G(1,1)H where we define H to be the ideal of Λ

generated by 1+T1−u and (1+T2)p
M −upM

and H is the ideal generated
by 1 + T1 − u and 1 + T2 − u.

The integer M of Theorem 6.7, part (3), can be defined as follows. Let rm be
the index of the subgroup generated by π′ in (OK/℘m+1), for all m ≥ 0. Then
there exists an integer M such that rm = r0p

m for m < M and rm = r0p
M

for m ≥ M . Alternatively, M is one unit less than the ℘-adic valuation of
(π′)p−1 − 1. In particular, a prime ideal ℘ is a Wieferich place (in base π′) if
and only if M > 0.

Proposition 6.8 If M = 0 then G(1,1)(T1, T2) is a unit power series in Λ =
Zp[[T1, T2]], where G(1,1) is the power series appearing in Theorem 6.7. Thus,
if M = 0 then Y(1,1) is trivial.

PROOF. All referenced results (those with a numbering ≥ 22) in this proof
can be found in [22]. Let M = 0 and put U∞ = lim←−Un. By Lemma 24, there is
an injection W = W(1,1) : U∞(1,1) → Λ and the image is the ideal of Λ generated
by 1 +T1−u and 1 +T2−u, where u is a topological generator of (1 + pZp)

×.
Let α1 and α2 be elements of U∞(1,1) such that

W (α1) = 1 + T1 − u, W (α2) = 1 + T2 − u.

By Lemma 28, H(1,1) is also the ideal H = (1 + T1 − u, 1 + T2 − u) of Λ. Let
D be the Λ-submodule of the completion of elliptic units in U∞(1,1) defined as
in p. 440-441 of [22]. By Theorem 29,

W(1,1)(D(1,1)) = Ω℘ · (φ(1,1))
−1 · G(1,1) ·H(1,1). (3)

where Ω℘ is a ℘-adic unit and φ(1,1)(T1, T2) is a unit power series. Let e1, e2 be
elements of D(1,1) such that W(1,1)(e1) = Ω℘ · (φ(1,1))

−1 · G(1,1) · (1 +T1−u) and

W(1,1)(e2) = Ω℘ · (φ(1,1))
−1 · G(1,1) · (1 + T2 − u). Let G(1,1)

β be the unique power
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series whose existence is proven in Theorem 22, for every β ∈ U∞. Then, by
Theorem 27,

G(1,1)
e1

= Ω℘ · G(1,1) · (1 + T1 − u), G(1,1)
e2

= Ω℘ · G(1,1) · (1 + T2 − u).

By Theorem 22:

G(1,1)
e1α2

= (1 + T2 − u)G(1,1)
e1

= (1 + T1 − u)G(1,1)
e2

= G(1,1)
e2α1

and so, again by Theorem 27, W(1,1)(e1α2) = W(1,1)(e2α1). Since W(1,1) is an
injection, we conclude that e1α2 = e2α1 and α1/α2 belongs to D(1,1). Thus
W (α1)−W (α2) = T1 − T2 ∈ W(1,1)(D(1,1)) and by Eq. (3) there are A,B ∈ Λ
such that

T1 − T2 = Ω℘ · (φ(1,1))
−1 · G(1,1) · (A · (1 + T1 − u) +B · (1 + T2 − u)).

Let π be a generator of ℘. If we let T1 = 2π and T2 = π then the ℘-adic
valuation of the left hand side of the last displayed equation is 1 and the ℘-
adic valuation of (A(2π, π) · (1 + 2π − u) + B(2π, π) · (1 + π − u)) is at least
1, and so it must be equal to 1 and G(1,1)(2π, π) must be a ℘-adic unit, and
so G(1,1)(T1, T2) must be a unit power series. Since G(1,1)(T1, T2) generates the
same ideal as G(1,1), we conclude that G(1,1) is also a unit power series, as
desired.

The following corollary provides a proof of Theorem 1.3.

Corollary 6.9 The series G(1,1) is a unit power series if and only if M = 0.
Hence, ℘ is a Wieferich place (in base π′) if and only if BHp−2

p is not a p-adic
unit.

PROOF. The previous proposition shows that if M = 0 then G(1,1) (and
G(1,1)) is a unit power series and the value of G(1,1) given by Theorem 6.7, part
(1), shows that for k = p, j = p−2, one has (p, p−2) ≡ (1,−1) mod p−1 and
the number BHp−2

p must be a p-adic unit. On the other hand, if M > 0 then
Theorem 6.7 states that, in particular, G(1,1)(T1, T2) · (1 +T1−u, 1 +T2−u)Λ

is a Λ-submodule of (1 + T1 − u, (1 + T2)p
M − upM

)Λ. As a consequence, the
series G(1,1) belongs to the ideal of Λ generated by

1 + T1 − u and
(1 + T2)p

M − upM

1 + T2 − u
.

Then G(1,1) is not a unit of Λ (because the constant term belongs to pZp) and
G(1,1) is not a unit power series either. Thus the value G(1,1)(u

p−1, up−2−1) is
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not a ℘-adic unit and the number BHp−2
p cannot be a ℘-adic unit either. Since

BHp−2
p is a rational number, it is not a p-adic unit.

6.3 The (two-variable) Main Conjecture

In this subsection, we remind the reader of the statement of the two-variable
Main Conjecture of Iwasawa theory for imaginary quadratic fields. We refer
the reader to [16] for more details and the proof of the conjecture. Let Kn, K∞
be as before, let Hn be the maximal unramified p-extension of Kn and put
H∞ =

⋃
n≥0Hn. Let M∞ be the maximal abelian p-extension of K∞ unramified

outside ℘, and let X∞ denote the Galois group of M∞/K∞. Let An be the p-
part of Cl(Kn), so that An ∼= Gal(Hn/Kn), and write A = lim←−An, where the
inverse limit is taken over the usual norm maps on the class groups. Then
Gal(H∞/K∞) ∼= A. Let Y(i1,i2) be as before, and similarly define A(i1,i2) and
(X∞)(i1,i2). Finally, let E1

p,n be the global units of Kn which are congruent to
1 modulo each prime of Kn lying above ℘, let R∗1p,n = E1

p,n ∩ R∗p,n and let

E1
p,n,R

∗1
p,n denote their closure in Un. Class field theory provides a very useful

exact sequence between all these elements:

0→ lim←−(E1
p,n/R

∗1
p,n)(i1,i2) → Y(i1,i2) → (X∞)(i1,i2) → A(i1,i2) → 0 (4)

Before we state the Main Conjecture, we remind the reader of some termi-
nology. A finitely generated Λ-module is called pseudo-null if it is annihilated
by an ideal of height 2. A pseudo-isomorphism of Λ-modules is a map with
pseudo-null kernel and cokernel. It follows from the classification theorem for
Λ-modules that for every finitely generated torsion Λ-module Y we can find
gi ∈ Λ, for some 1 ≤ i ≤ n, such that Y and ⊕ni=1Λ/giΛ are pseudo-isomorphic.
The characteristic ideal (

∏
gi)Λ is a well-defined invariant of Y which we will

denote by char(Y ). A generator of char(Y ) is usually called a characteristic
power series, and it satisfies the following properties (see, for example, [15],
§0.2):

• char(Y )Y is pseudo-null, and
• if Y ′ ⊆ Y then char(Y/Y ′) char(Y ′) = char(Y ).

The modules that appear in Eq. (4) are finitely generated torsion Λ-modules
and:

Theorem 6.10 (Main Conjecture, Rubin, [16], Thm. 4.1) For all char-
acters χi11 χ

i2
2 of ∆,

char((X∞)(i1,i2)) = char(Y(i1,i2))
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and
char

(
lim←−(E1

p,n/R
∗1
p,n)(i1,i2)

)
= char

(
A(i1,i2)

)
.

We will also make use of the following theorem:

Theorem 6.11 (Rubin, [16], Thm. 3.3) Let K0 = K(A[p]), let Ep be the
group of units in the ring of integers of K0, and let R∗p be the group of elliptic

units in Ep. For every irreducible character χi11 χ
i2
2 of ∆ ∼= Gal(K0/K),∣∣∣Cl(K0)(i1,i2)

∣∣∣ =
∣∣∣(Ep/R∗p)(i1,i2))

∣∣∣ .
Now we are ready to show the last two results that we will need for the proof
of Theorem 6.6.

Lemma 6.12 Let f(T1, T2) ∈ Λ and let Y be a finitely generated torsion
Λ-module with no non-zero pseudo-null submodules and char(Y ) = f(T1, T2).
Then, Y/Y p is non-trivial if and only if f(T1, T2) is not a unit over Fp[[T1, T2]].

PROOF. By the classification of finitely generated torsion Λ-modules, and
since Y does not have non-zero pseudo-null submodules (by assumption), we
deduce that Y is isomorphic (and not just pseudo-isomorphic) to ⊕ni=1Λ/giΛ
for some gi ∈ Λ with (

∏
gi)Λ = fΛ. Without loss of generality, we may assume

f =
∏
gi. Thus:

Y/Y p ∼=
n⊕
i=1

Λ/(p, gi(T1, T2))Λ ∼=
n⊕
i=1

Fp[[T1, T2]]/(gi(T1, T2))

where gi(T1, T2) is the reduction of gi modulo pΛ. Thus, Y/Y p is non-trivial
if and only if Fp[[T1, T2]]/(gi(T1, T2)) is non-trivial for some 1 ≤ i ≤ n and, in
turn, this is equivalent to gi(T1, T2) being a non-unit of Fp[[T1, T2]], for some
1 ≤ i ≤ n. Finally, f =

∏
gi is a non-unit over Fp[[T1, T2]] if and only if there

is an i, with 1 ≤ i ≤ n, such that gi is a non-unit over Fp[[T1, T2]].

Remark 6.13 The modules E∞ = lim←−E
1
p,n and R∞ = lim←−R∗1p,n satisfy:

rankΛ(E∞) = rankΛ(R∞) = 1

and (E∞)torsion = (R∞)torsion = 0 (see [16], Cor. 7.8). Thus, E∞/R∞ is a
torsion Λ-module with no non-zero pseudo-null submodules. The Λ-module
Y(i1,i2) does not have non-zero pseudo-null submodules by Theorem 6.7, and
(X∞)(i1,i2) does not have non-zero pseudo-null submodules by Theorem 5.3,
part (v), of [16] (this result is due to Perrin-Riou). As a consequence of the
exact sequence Eq. (4), the torsion Λ-module A(i1,i2) does not have non-zero
pseudo-null submodules either.
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Proposition 6.14 Suppose that the component B
(p)
(i1,i2) of the kernel of the

map R∗p/(µp(R
∗
p)
p) → Ep/(µp(Ep)p) is non-trivial. Then, Y(i1,i2)/(Y(i1,i2))

p is
non-trivial also.

PROOF. Put C1 = (Ep/R∗p). Suppose the component B
(p)
(i1,i2) is non-trivial.

Then, by definition, (C1/C
p
1 )(i1,i2) is non-trivial. In particular, (C1)(i1,i2) has a

non-trivial element of order p, and therefore p divides the order of (Ep/R∗p)(i1,i2).
By Theorem 6.11, p also divides the order of Cl(K0)(i1,i2).

As before, for n ≥ 0, let An be the p-part of the class group Cl(Kn) and put
A(i1,i2) = lim←−(An)(i1,i2). Then, by the considerations at the beginning of the
proof, we conclude that (A0)(i1,i2) is non-trivial. Notice that the norm maps
An+1 → An are surjective (see [23], Thm 10.1), therefore they are also surjec-
tive when restricted to the χi11 χ

i2
2 -component. Thus, A(i1,i2) and A(i1,i2)/Ap(i1,i2)

are non-trivial also.

Let f(T1, T2) be the characteristic power series of A(i1,i2). Remark 6.13 shows
thatA(i1,i2) does not have non-zero pseudo-null submodules. SinceA(i1,i2)/Ap(i1,i2)

is non-trivial, f(T1, T2) is a non-unit over Fp[[T1, T2]], by Lemma 6.12. By the
Main Conjecture,

f(T1, T2) = char
(
A(i1,i2)

)
= char

(
lim←−(E1

p,n/R
∗1
p,n)(i1,i2)

)
.

Thus, if we put D(i1,i2) = lim←−(E1
p,n/R

∗1
p,n)(i1,i2), then D(i1,i2) is a torsion Λ-

module with no non-zero pseudo-null submodules (see Remark 6.13) and
char(D(i1,i2)) = f(T1, T2) is a non-unit over Fp[[T1, T2]]. Since D(i1,i2) ⊆ Y(i1,i2)

(notice that the injective map D(i1,i2) → Y(i1,i2) in Eq. (4) is just the natural
inclusion),

char(Y(i1,i2)) = char(D(i1,i2)) char(Y(i1,i2)/D(i1,i2))

and, therefore, f(T1, T2) divides char(Y(i1,i2)). Hence char(Y(i1,i2)) is a non-
unit over Fp[[T1, T2]]. Finally, the object Y(i1,i2) is a torsion Λ-module with no
non-zero pseudo-null submodules (see Remark 6.13) so, by Lemma 6.12, the
quotient Y(i1,i2)/(Y(i1,i2))

p is non-trivial, as desired.

6.4 Proof of Theorem 6.6

We will prove the contrapositive of the statement of the theorem. Suppose
that k, j are integers with k + j ≡ 0 mod 2 and k > j ≥ 0. Further, suppose
that B

(p)
(i1,i2) is non-trivial, where (k,−j) ≡ (i1, i2) mod p− 1. By Proposition

6.14, there exists a non-trivial element in Y(i1,i2)/(Y(i1,i2))
p.
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First assume that (i1, i2) ≡ (1, 1) mod p− 1. Then Corollary 6.9 implies that
M > 0 and BHp−2

p is not a p-adic unit, as claimed.

Suppose that (i1, i2) 6≡ (1, 1) mod p − 1. Then, by Theorem 6.7, Y(i1,i2)
∼=

Λ/G(i1,i2)(T1, T2)Λ with G = G(i1,i2)(T1, T2) as in the statement of the theorem,
and

Y(i1,i2)/(Y(i1,i2))
p ∼= Λ/(p,G(i1,i2))Λ ∼= Fp[[T1, T2]]/(G(i1,i2))

where G is the reduction modulo pΛ of G. Since

G(i1,i2)(u
k − 1, uj − 1) =

(
1− ψ(℘)k+j

N℘j+1

)(
1− ψ(℘′)k+j

N℘′k

)
(k − 1)! · BHj

k

Ω
(k+j)
℘

we conclude that if BHj
k was a p-adic unit then G(i1,i2)(u

k − 1, uj − 1) would
be a ℘-adic unit and the series G(i1,i2) would be a unit of O∞℘ [[T1, T2]]. Since

G(i1,i2) ∈ Λ generates the same ideal, then G(i1,i2) would be necessarily a unit
of Fp[[T1, T2]] and the ideal (G(i1,i2)) would generate all of Fp[[T1, T2]]. Hence,

if BHj
k was a p-adic unit, the space Y(i1,i2)/(Y(i1,i2))

p would be trivial, and a
contradiction occurs for we have previously shown the existence of a non-trivial
element. Thus, BHj

k must have positive p-adic valuation, and this finishes the
proof of Theorem 6.6.

6.5 The spaces B
(p)
(2,0), B

(p)
(0,2) and B

(p)
(1,1)

Proposition 6.15 If BH0
2 = G2(L) is a p-adic unit then the subspaces B

(p)
(2,0)

and B
(p)
(0,2) are trivial. Consequently, the spaces B

(p)
(2,0) and B

(p)
(0,2) may be non-

trivial only if K is the quadratic field with DK = −67 and p = 19.

PROOF. Let p be a split prime of K. Let ℘ be a prime above p and let E℘ be
the group of units in the ring of integers of K(℘) and let R∗℘ be the subgroup
of Robert’s elliptic units. We remind the reader that, even though µp ⊂ R∗p,
the roots of unity are not included in R∗℘ (and, in fact, they are not in E℘
either). Put E (p)

℘ = E℘/(E℘)p and R(p)
℘ = R∗℘/(R

∗
℘)p and let B℘ be the kernel

of the natural map R(p)
℘ → E (p)

℘ . Let k be an integer multiple of e and let σk

the kth power of the isomorphism σ : G℘ = Gal(K(℘)/K) ∼= (OK/℘)×/{±1},
regarded as an irreducible representation of G℘ over Fp. In [12] it is shown that
if k is an even integer and Gk(L) is a p-adic unit then the subspace (B℘)σk is
trivial. In particular, if BH0

2 = G2(L) is a p-adic unit, then (B℘)σ2 is trivial.
Notice that this result is independent of the chosen prime above p. Hence, if
σ′ is the irreducible representation Gal(K(℘′)/K) ∼= (OK/℘′)×/{±1} then if
G2(L) is a p-adic unit then also (B℘′)σ′2 is trivial.
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Recall that B(p) is defined as the kernel of

S(p) = Sp/(µp(Sp)
p) −→ E (p) = E ′p/(µp(E ′p)p)

where, in the split case, Sp and E ′p are, respectively, the group of p-Robert units
and the group of p-units in K(p). Notice that the map is definitely injective on
the subgroup generated by the powers of π and π′, so the kernel B(p) coincides
with the kernel of

R(p) = R∗p/(µp(R
∗
p)
p) −→ E (p).

Let χ1, χ2 be the characters of Gal(K(A[p])/K) defined in Lemma 5.2. Notice
that the kernel of Gal(K(A[p])/K) → Gal(K(p)/K) = Gal(K(x(A[p]))/K)
has order 2, and χ2

1 and χ2
2 are therefore trivial on such kernel. Thus, mak-

ing a slight abuse of notation, we may also consider χ2
1 and χ2

2 as represen-
tations of G = Gal(K(p)/K). Notice that the restriction of χ2

1 (resp. χ2
2) to

Gal(K(℘)/K) (resp. Gal(K(℘′)/K)) is σ2 (resp. σ′2). Then, (R∗p/(µp(R
∗
p)
p))(2,0)

is the Fp[G]-submodule of R∗p/(µp(R
∗
p)
p) such that the action of the Galois

group G is given by χ2
1. Hence (R∗p/(µp(R

∗
p)
p))(2,0) is in fact isomorphic to

(R(p)
℘ )σ2 and (R∗p/(µp(R

∗
p)
p))(0,2) is isomorphic to (R

(p)
℘′ )σ′2 . Therefore, by the

previous discussion, if G2(L) is a p-adic unit then B
(p)
(2,0) and B

(p)
(0,2) are trivial,

as claimed.

In accordance with the theory, when DK = −67, one has BH0
2 = 2 · 19 and

BH16
18 =

2 · 19 · 291007 · 5899501 · 1016672133973

34 · 52 · 72 · 11 · 13
.

Since (0,−2) ≡ (18, 16) mod 18, this means that in this case both B
(19)
(2,0) and

B
(19)
(0,2) may be non-trivial.

Proposition 6.16 If BHp−2
p is a p-adic unit (or equivalently, if ℘ is not a

Wieferich place) then B
(p)
(1,1) is trivial.

PROOF. The proposition is an immediate consequence of Theorem 6.6 and
Corollary 6.9.

The following table lists all split primes less than 50000 such that a prime ℘
lying above p is a Wieferich place of K (with discriminant DK).

DK −3 −4 −7 −8 −11 −19 −43 −67 −163

p 13, 181, 2521 29789 19531 (none) 5 11 1741 24421 1523
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Remark 6.17 The values BHj
k can also be computed using the recursive re-

lations among the Bernoulli-Hurwitz numbers, which can be deduced from the
work of A. Weil [24]. In particular, the Hurwitz numbers BH0

k = Gk(L) for
even k ≥ 8 can all be deduced from BH0

2, BH0
4 and BH0

6 and the recurrence
formula ([24], p. 35):

BH0
k =

6

(k − 6)(k + 1)(k − 1)

k−4∑
even h=4

(h− 1)(k − h− 1) BH0
h ·BH0

k−h .

Once enough Hurwitz numbers BH0
k have been calculated, one can calculate

the Bernoulli-Hurwitz numbers of the form BH1
2m+1 using the formula ([24],

p. 45):

BH1
2m+1 =

2m+ 3

2
BH0

2m+2−
1

2

m∑
r=1

BH0
2r ·BH0

2m−2r+2 .

Finally, applying j − 1 times the differential operator D of Weil, as defined
in [24], p. 42, on the previous equation, one obtains the following recurrence
formula for all BHj

k:

λ(k, j) = (1− k)(2− k) · · · (j − k), Cj
k = λ(k, j) BHj

k

λ(k, j − 1) BHj
k =

2m+ 3

2
Cj−1
k+1 −

1

2

(k−j)/2∑
r=1

j−1∑
h=0

(
j − 1

h

)
Cj−1−h

2r+j−1−h ·Ch
k−j−2r+2+h.

Using these formulas one can effectively compute the value BHp−2
p for all split

primes, although these calculations tend to be computationally demanding. For
example, one can calculate BH3

5 = 135/2 = 2−1 · 33 · 5 for K = Q(
√
−11), and

BH9
11 = (11 · 17 · 6781)/(22 · 32 · 52 · 7) for K = Q(

√
−19).

7 Proof of Theorem 1.2

We reduced the proof of Proposition 3.7 (and hence Theorem 1.2) to show-
ing Lemma 4.3. Namely, under the conditions of Theorem 1.2, we need to
prove that the intersection of N (p) and the kernel B(p) is trivial. The Fp[G]-
module N (p) is isomorphic (via Ψ−1

0 ) to N/pM , where N is the submodule of
M consisting of all the functions m : R → Z which reduce modulo p to a ho-
mogeneous polynomial of degree 2 over Fp. We use the orthogonal idempotents
to decompose N/pM as:

N/pM ∼= ⊕χ(N/pM)χ.

Therefore, it suffices to show that if (N/pM)χ is non-trivial then B(p)
χ is nec-

essarily trivial.
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7.1 The inert case

Let p be inert in K. We claim that, in fact:

N/pM ∼= (N/pM)χ2 ⊕ (N/pM)χp+1 (5)

Furthermore, if N/pM decomposes as in Eq. (5), then, as a direct consequence
of Corollary 6.4, the intersection of N (p) and B(p) would be automatically
trivial. Thus, we just need to prove Eq. (5).

Let mnorm ∈M/pM be defined by:

mnorm(r) = mnorm(r1, r2) ≡ N(I(r)) ≡ N(r1τ + r2) mod p.

It is clear that mnorm mod p is given by a homogeneous quadratic polynomial
of degree 2 and so, mnorm ∈ N/pM . Moreover, if α is an element of G =
(OK/(p))×/{±1} then:

α ·mnorm(r) = mnorm(α · r) ≡ N(α · I(r)) ≡ N(α) ·mnorm(r) mod p

It follows that the 1 dimensional Fp-space spanned bymnorm isG-invariant, and
the representation afforded by the module is equivalent to the representation
σp+1.

Next we describe the complement of 〈mnorm〉 in N/pM . We extend scalars and
regard N/pM as a Fp[G]-module, where Fp is a fixed algebraic closure of Fp.
Recall that K = Q(

√
−d) and we defined τ by:

τ =


√
−d , if − d ≡ 2, 3 mod 4,

1+
√
−d

2
, if − d ≡ 1 mod 4.

In particular, τ can be regarded as a scalar in Fp. Define elements of N/pM
by the formulas:

m1(r1, r2) ≡ (r1τ + r2)2, m2(r1, r2) ≡ (r1τ + r2)2 mod p.

For α ∈ G one has α · m1(r) ≡ α2m1(r) mod p and α · m2(r) ≡ α2m2(r)
mod p where the appearances of α2 are to be regarded as scalar multiplication
by α2 ∈ Fp, and α denotes complex conjugation. Hence, the space spanned by
m1 and m2 is a two dimensional Fp[G]-module, and the representation afforded
by it coincides with the representation σ2 (compare the traces). Since, m1, m2

and mnorm span N/pM , we conclude that the Fp[G]-complement of 〈mnorm〉 in
N/pM is no other than (N/pM)χ2 , which concludes the proof.
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7.2 The split case

Let p be split in K. We claim that:

N/pM ∼= (N/pM)(2,0) ⊕ (N/pM)(0,2) ⊕ (N/pM)(1,1) (6)

The results in Proposition 6.15 and 6.16, together with Eq. (6) are sufficient
to establish the main Theorem 1.2 in the split case. In order to show this
decomposition, we define elements of the Fp-module N/pM as follows. Here
we fix an integer n such that n2 ≡ DK mod p, set τ̂ = (1+n)/2, τ̂ ′ = (1−n)/2,
so that if π = a + bτ then π ≡ a + bτ̂ mod p and π′ ≡ a + bτ̂ ′ mod p. Then
we have:

mnorm(r) =mnorm(r1, r2) ≡ N(I(r)) ≡ N(r1π + r2π
′) mod p

m1(r)≡ (π′ · I(r))2, m2(r) ≡ (π · I(r))2 mod p

Let χ1 : (OK/(p))× → (OK/℘)× ∼= F×p be given by α mod p 7→ α mod ℘ and
similarly define χ2 which sends α mod p 7→ α mod ℘′. It is plain that χ1 and
χ2 are the mod p reductions of the characters χ1 and χ2 of Lemma 5.2. It is
also easy to check that the norm homomorphism from (OK/(p))× down to F×p
is given by χ1 · χ2. Also note that π′α ≡ π′χ1(α) mod p and πα ≡ πχ2(α)
mod p.

The Galois action of α ∈ G = (OK/(p))×/{±1} is as follows:

α ·mnorm(r)≡N(α) ·mnorm(r) ≡ χ1(α)χ2(α)mnorm(r) mod p,

α ·m1(r)≡ (π′α · I(r))2 ≡ χ1(α)2m1(r) mod p,

α ·m2(r)≡χ2(α)2m2(r) mod p.

It follows that the 1 dimensional Fp-spaces spanned by mnorm, m1 and m2 are
G-invariant, and the representation afforded by these modules are respectively
equivalent to the representation χ1χ2, χ2

1 and χ2
2. Since N/pM is three dimen-

sional and G acts differently on each of the 1-dimensional subspaces listed
above, these must be linearly independent and span all of N/pM . This proves
the decomposition of equation (6) and concludes the proof of the theorem.
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der mathematischen Wissenschaften: Mit Einschluss ihrer Anwendungen, Band
I-2, Heft 10, Teil II. Stuttgart: Teubner 1958.

[5] K. Iwasawa, On Leopoldt’s conjecture, Seminar Note on Algebraic Number
Theory, R.I.M.S. Kyoto U. (1984), 45-53.

[6] N. Katz, The Congruences of Clausen - von Staudt and Kummer for Bernoulli-
Hurwitz numbers, Math. Ann. 216, (1975), 1-4.

[7] D. S. Kubert, S. Lang, Modular Units, Grundlehren der Mathematischen
Wissenschaften, vol. 244, Springer-Verlag, New York, 1981.
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Sup., 4e série, t. 11, (1978), 297-389.

[13] D. E. Rohrlich, A deformation of the Tate module. Journal of Algebra 229,
(2000), 280-313.

[14] D. E. Rohrlich, Modular units and the surjectivity of a Galois representation.
Journal of Number Theory 107, (2004), 8-24.

[15] K. Rubin, On the main conjecture of Iwasawa theory for imaginary quadratic
fields, Invent. math. 93, (1988), 701-713.

26



[16] K. Rubin, The “main conjectures” of Iwasawa theory for imaginary quadratic
fields, Invent. math. 103, (1991), 25-68.

[17] J. W. Sands, Kummer’s and Iwasawa’s version of Leopoldt’s conjecture, Canad.
Math. Bull. 31 (1988), no. 3, 338346.

[18] J.-P. Serre, J. Tate, Good reduction of abelian varieties, Annals of Mathematics
88, (1968), 492-517.

[19] J.-P. Serre, Propriétés galoisiennes des points d’ordre fini des courbes
elliptiques, Inventiones Mathematicae 15 (1972), 259-331.

[20] J. F. Voloch, Elliptic Wieferich Primes, Journal of Number Theory 81, (2000),
205-209.

[21] R. I. Yager, A Kummer criterion for imaginary quadratic fields, Compositio
Math. 47, no. 1, (1982), 31-42.

[22] R. I. Yager, On two variable p-adic L-functions, Ann. of Math. 115, (1982),
411-449.

[23] L. C. Washington, Introduction to Cyclotomic Fields, Springer-Verlag (1996).

[24] A. Weil, Elliptic Functions according to Eisenstein and Kronecker, Springer-
Verlag (1976).

27


