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Abstract 

Conventional measures of trading costs rely on the quote midpoint as an estimate 
of the true security value. However, investors employ a more precise estimate, which 
takes advantage of public information besides best quotes. Investors buy when their 
public information midpoint is close to the ask price and therefore is above the quote 
midpoint. As a result, conventional measures have a substantial upward bias, which is 
particularly large in the options market. The effective and average quoted spreads 
overestimate actual trading costs by 42% and 87% respectively; or by several billion 
dollars annually. The timing bias varies across stocks and grew dramatically larger over 
time. Trades of non-round size pay smaller spreads. Trades cause only smaller part of the 
observed price impact, while expected changes in the quote midpoint is the dominant 
component. Conventional measures can be adjusted for the timing bias. Our results 
indicate that the adjusted measures should be used to make inferences about liquidity and 
informed trading. 
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Introduction  

If the quote midpoint is replaced with a more precise measure of fair value based 

on a wider set of public information, will it make a difference? We show that it will 

because conventional measures based on the quote midpoint significantly overestimate 

trading costs and price impact. Although the quote and public information midpoints are 

equal on average, they differ systematically at the time of trades. Investors buy when the 

public information midpoint is close to the ask price and therefore is above the quote 

midpoint, as Figure 1 illustrates. Thus, the conventional bid-ask spreads are larger than 

actual trading costs. The data reveal that investors and their execution algorithms rely on 

the public information midpoint, academics should follow suit. 

Measures of trading costs and price impact play a fundamental role in financial 

economics. An analysis of permanent and temporary price impacts sheds light on 

information flows within and between markets1. The link between liquidity and asset 

returns receives increasing attention, with the bid-ask spreads being the most popular 

measure of liquidity2. Realistic estimates of trading costs are required to access an 

economic magnitude of trading strategies which test market efficiency. 

 Traditional measures of trading costs universally rely on the quote midpoint as an 

estimate of the true value.3This assumption has historical roots as outsiders often had 

access only to the best bid and ask prices. However, currently, investors can easily access 

a considerable amount of public information besides best prices, with limit order book 

and prices of related securities being the most obvious examples.  

The public information allows for a more precise estimate of the true security 

value4 than the quote midpoint, which we call the public information midpoint (or simply 

the public midpoint). More specifically, the public midpoint is defined as the best 

                                                 
1 Hasbrouck (1991) is a good example. 
2 Amihud, Mendelson and Pedersen (2006) provide an extensive survey. 
3 For example, the effective bid-ask spread is defined as a doubled difference between the trade price and 
the quote midpoint at the time of the trade. Bessembinder  and Venkataraman (2009) and numerous other 
papers have this definition. 
4 We define fair value as a market consensus about a price of a given security. Most of the time the fair 
value is between the best bid and ask prices, otherwise investors will trade against them. 
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forecast of the future quote midpoint based on the current quote midpoint and other 

public variables, as summarized by Equation (1)5.  

( )ttTtTt XPPEP ,0,|ˆ
++ =      (1) 

We argue that the quote midpoint should be replaced with the public midpoint in 

all measures of trading costs and price impact. For example, Equations (2) and (3) show 

how the effective bid-ask spread becomes the public effective spread (or simply the 

public spread) after the adjustment. Although theoretical literature acknowledges the 

importance of accounting for public information in estimating the true security value, 

empirical literature almost universally ignores6 this recommendation. 

)P̂-2(TradeP  Costs  )P-2(TradeP  Costs Ttttt +=→=              (2) 

TtTtt P̂P̂ImpactPImpact ++∆+∆+ −=→−= tttP               (3) 

The adjusted measures are important because, besides being more accurate, they 

reflect how investors actually execute trades7. The main way to minimize trading costs is 

the strategy called the execution timing. Investors time their purchases to the moments 

when the public midpoint is close or above the ask price. Thus, the public midpoint is 

systematically above the quote midpoint at the time of buyer initiated trades. As a result, 

conventional measures based on the quote midpoint overestimate trading costs creating 

the execution timing bias.  If investors were executing trades at random, there would be 

little difference between the conventional and adjusted measures. However, investors 

time their trades.  

The execution timing implies that conventional measures of price impact also 

have an upward bias. These measures usually don’t account for the expected changes in 

the quote midpoint. If the public midpoint is much higher than the quote midpoint, the 

latter will increase converging to the former. At the same time, execution algorithms are 

likely to buy because the public spread is relatively small. As a result, Figure 1 shows 

that only a portion of the subsequent increase in the quote midpoint should be attributed 

to the causal impact of trades, the remainder is simply regression toward the mean. 

                                                 
5 Equation (1) is linear, but non-linear models can potentially improve the forecast.  
6 Hasbrouck (1991) is one of few exceptions. He controls for past price changes and signed volumes to 
distinguish the permanent and transitory price impacts. However, other public variables are not included. 
7 Unlike post-trade measures, pre-trade measures not only estimate costs but also tell when to trade. 
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Importantly, the investor’s ability to buy before the price increase is based on effective 

processing of public rather than private information.  

Empirical part of the paper demonstrates that the execution timing bias is large in 

the options market. The effective and average quoted spreads overestimate actual trading 

costs by 42% and 87% respectively! 

The options market is a perfect laboratory to study the timing bias for two 

reasons. First, the underlying stock price is obviously the most important public 

information for option prices. Second, the Black-Scholes-Merton model (BSM) provides 

a common way to transform the underlying price into the implied option price8. Thus, the 

model selection is much easier for options than for stocks. In addition to this simple 

model, we also employ a regression model in the spirit of Equation (1). It predicts 

changes in the option midpoint based on the BSM implied price and information about 

option limit order book and short-term price dynamics.  

We apply these two methodologies to the sample of options on 39 stocks over the 

three-year period from April 2003 through October 2006, and find several implications of 

the execution timing. First, as mentioned above, both trading costs and price impact have 

much smaller magnitudes than was previously believed. In absolute terms, the execution 

costs are overestimated by several billion dollars per year9.  Second, there is a substantial 

variation in the timing bias across stocks. Thus, conventional and adjusted measures of 

the bid-ask spread can rank stocks differently. Third, the magnitude of the execution 

timing bias increased threefold in less than four years. The execution timing will be even 

more important in the future. This finding demonstrates the profound effect of the growth 

in algorithmic trading on the options market. Finally, the execution bias varies with trade 

size. Trades of round size, divisible by 10, have substantially worse execution and 

smaller price impact than non-round trades10, while the effective spreads are the same for 

two groups. The round-volume results shed light on the execution timing model used by a 

representative execution algorithm. 

                                                 
8 An additional assumption is that current option quote midpoint will eventually converge to the BSM 
implied price. 
9 Indeed, combining option trading volume of 4.6 billion contracts in 2011 with average execution bias of 2 
dollars per contract produces a multi-billion dollar number. Each option contract is on one hundred shares. 
http://www.optionsclearing.com/about/press/releases/2012/01_03.jsp 
10 For example, trades of 30 contracts pay a spread of four cents, while trades of 29 or 31 contracts pay only 
three cents. 
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The paper raises an important policy question concerning the protection of retail 

investors. Currently, retail investors cross-subsidize institutional traders11 by paying the 

entire bid-ask spread while institutional algorithms employ the execution timing and pay 

only half of it. Market makers effectively quote a different spread for each of the two 

investor types. Information is largely symmetric, and market makers can estimate the 

probability of a trade coming from each investor type conditional on the public midpoint. 

The main friction is that retail investors cannot constantly re-compute and update their 

quotes. This friction can be elevated by delegating this function to the broker or exchange 

level. One possible solution is to quote option prices in implied volatility rather than 

dollar terms. A less radical solution would be to encourage exchanges to introduce limit 

orders linked to implied volatility12.   

Overall, our results indicate that the usage of the adjusted measures is crucial for 

making inferences about liquidity and informed trading. The execution timing provides 

exciting insights about the inner workings of algorithmic trading.  

Data  

The paper employs tick-level option and stock data on 39 stocks including 2 

ETFs. The data are provided by Nanex, a firm specializing in delivering high-quality data 

feeds. The sample period is April 2003 through October 2006 and includes 882 trading 

days. The selected stocks had the most liquid options as measured by trading volume 

prior to the beginning of the sample period in March 2003. The data include trades and 

best quotes for both stocks and options for all exchanges. A more detailed description of 

the data is provided by Muravyev, Pearson, and Broussard (2012)13.  

We include only options with between 5 and 700 calendar days before expiration. 

First and last five minutes of a trading day are excluded to avoid opening and closing 

rotations. Trades for which implied volatility or the public midpoint cannot be computed 

are also excluded. 

                                                 
11 If dealers are competitive and make zero profits, profits of one investor group equal to losses for the 
other. 
12 This solution may pose technical challenges because quote traffic will increase.  
13 Compared to Muravyev et al. (2012), we exclude DIA because through most of the sample period it was 
traded only at CBOE. 
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The paper studies of option trades and subsequent quote changes. Tables 1 and 2 

summarize main descriptive statistics. The total sample includes 20.4 million option 

trades. Nasdaq ETF QQQ/QQQQ has the largest number of trades (1.8 million before the 

ticker change and 1.9 million afterwards) while AOL has only 52 thousand trades14. 

Average trade transaction has a price of 1.7 dollars and size of 40 contracts15. However, 

the trade size distribution is highly skewed with 50th and 75th percentiles of 10 and 20 

contracts respectively; and 14% of trades have the smallest possible size of one contract. 

There are slightly more seller initiated (54%), and call option transactions (64%). 

The direction of a trade is determined by the quote rule. If a transaction price is at 

the National Best Bid and Offer (NBBO) quote midpoint, the quote rule is applied to the 

best quotes of the exchange which reported the transaction. As 84% of transactions are 

recorded at NBBO prices, the method is easy to apply. On average three out of six 

exchanges are quoting the best national at the time of trades. 

Methodology 

Time is money – by postponing trade execution, investors can lower trading costs. 

But how exactly can investors achieve this? Although there is a large theoretical literature 

on optimal trade execution, not much is known about inner workings of the black box of 

algorithmic trading16. We show that the execution timing is one of the most effective 

ways to minimize trading costs.  

As Figure 1 and Equations (1)-(3) imply, the model for the public midpoint plays 

a key role for the execution timing. In the first step, variables representing public 

information and a functional form are selected for the main regression in Equation (1). 

Then, the regression coefficients are estimated on the sample from regular time 

intervals17. Finally, the coefficients are employed to estimate the public midpoint at the 

time of trades. 

                                                 
14 AOL dropped from the sample after changing its ticker in October 2003. 
15 Each option contract is on one hundred underlying shares. 
16 The conventional wisdom is to split large trades to minimize temporary price impact. Anand et al. (2012) 
study trade execution costs for the database of institutional trades. However, they have no information on 
how broker’s execution algorithms work.  
17 Trade timing is endogenous, that is why regular time intervals are appropriate. 
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Ideally, all public information should be included in the main regression. 

However, it’s hardly feasible because some public information is costly to acquire18, and 

historical data are often not available. Despite this difficulty, it is often possible to 

identify first order variables from general considerations. For example, for the stock 

market the most relevant variables include price history, state of the limit order book, and 

market and industry components. Statistical methods of model selection can help with 

picking specific variables. For the options market the task is much easier as the 

underlying stock price is clearly the main public information. The model specification is 

also easier to choose for the options market as the Black-Scholes-Merton formula links 

option and stock prices. 

After the public midpoint model is estimated, the adjusted measures of the bid-ask 

spread and price impact in Equation (3) can be computed. If there are several alternative 

models, the most precise one should be chosen.  

The adjusted measures can substantially reduce but cannot fully eliminate the 

timing bias. Having better resources, sophisticated investors can potentially select a better 

public midpoint model than academics19. Thus, our estimates provide a lower bound for 

the execution timing bias. Indeed, a more precise model will find opportunities to trade at 

low costs that a simpler model will miss. Similar to the public versus quoted midpoint 

case, the public midpoint for a sophisticated model will be systematically above the one 

from a simple model for buyer initiated trades. 

( )
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Importantly, Equation (1) serves primarily as a tool to estimate the difference 

between public and quoted prices at the present moment rather than to forecast future 

price dynamics. Indeed, Equations (4) show that if the quote midpoint will converge to 

the public one within time T20, then the predicted change in the quote midpoint equals to 

the current difference between the two midpoints. Time T in the formula should be large 

enough for the quote midpoint convergence. The convergence can take more than an hour 

in the option market mainly because of the large bid-ask spreads. 

                                                 
18 Grossman and Stiglitz (1980) 
19 The model can be non-linear such as neural networks. 
20 An additional assumption is that the public midpoint follows a martingale. 
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The predictable behavior of the quote midpoint is consistent with the efficient 

market hypothesis, since the expected profitability is smaller than trading costs and risks. 

Indeed, the public midpoint is normally within the bid and ask prices. The execution 

timing is used to minimize trading costs rather than to make arbitrage profits. 

To quantify the effect of the execution timing for any given transaction, Equation 

(5) defines a measure of the execution timing bias as one minus the ratio of the public to 

effective spreads. As the public spread is twice the difference between the transaction 

price and the public midpoint, the timing bias can be rewritten in terms of the difference 

between the public and quote midpoints normalized by a bid-ask spread. 

2/adBidAskSpre

ˆ

Spread Effective

Spread Public
  1  Bias Timing

tt

t
t

tTt PP −
=−= +              (5) 

As discussed above, conventional measures of price impact significantly 

overestimate the causal effect of trades on prices. To remind the mechanism, investors 

buy when the public midpoint is close or above the ask price. At the same time, the quote 

midpoint will increase converging to the public midpoint. Equation (6) decomposes the 

observed price impact21 into its causal impact, and the expected change in the quote 

midpoint if there were no trade. The expected part is estimated with Equation (1) but with 

smaller time horizon than for the public midpoint. Price impact is traditionally estimated 

over time horizon of one to twenty minutes that may not be enough for the quote 

midpoint to converge to the public midpoint. 
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The execution bias in price impact has several implications. First, price impact is 

commonly decomposed into asymmetric information (private information) and inventory 

risk components22. This paper introduces the third component, the expected quote 

changes based on the available public information. The execution timing component 

plays at least as important as the other two.  

In addition, the timing bias in price impact has different magnitude for different 

subsets of trades. For example, the bias is higher for large trades because they are more 

                                                 
21 Price impact is adjusted for trade direction everywhere in the paper. 
22 See Muravyev (2011) for a recent example. 



8 
 

likely to come from sophisticated investors. Thus, the slope of the price impact as a 

function of trade size is gentler than is implied by conventional measures.  

Last part of the paper tries to reverse engineer the public midpoint model of a 

representative investor. If two groups of trades have equal asymmetric information and 

inventory risk, then the difference between their price impacts is entirely due to the 

execution timing23. The simplest model for the public midpoint relative to which the 

difference in price impacts disappears is the model used by a representative algorithm. 

Indeed, if investors use a factor which is omitted from the model, then the adjustment for 

the expected change in the quote midpoint24 won’t fully eliminate the difference in price 

impacts. On the other hand, if the two groups differ in their private information content, 

then the difference in price impacts will remain under any model.  

The difference in the group price impacts provides a model free lower bound for 

the execution bias as both groups contain some execution timing. If the difference is 

significant, it helps to eliminate concerns about the timing bias being mechanically 

produced by a public midpoint model. 

The two groups of trades we choose are round versus non-round sized trades. 

Round trades are trades of more than fifteen contracts, with size divisible by ten and to a 

lesser degree trades divisible by five. The comparison can be done separately for each 

round number or jointly. The non-round trades have larger timing bias because they are 

more likely to come from sophisticated investors employing algorithmic trading. First, 

for psychological reasons, unsophisticated investors are likely to choose a round number 

as a target position, and to acquire it in a single transaction. On the other hand, 

sophisticated investors are more likely to compute the target position from a model25. 

Second, execution algorithms are likely to split the target size into multiple trades to take 

advantage of opportunities. If the price is attractive, they will take all the available size at 

it. Empirically, sophisticated investors use non-round trades for both reasons, but taking 

all available size at attractive price is more important.  

                                                 
23 For example, the proportion of noise traders is different for the two groups. 
24 The expected change in quote midpoint can be approximated by the difference between the quote 
midpoint at the end of the period and the current public midpoint.  
25 For example, exotic derivatives desks commonly hedge with plain vanilla options. 
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Inventory risk is the same for the two groups because there is little difference in 

trade size. Compare for example 29 and 31 with 30 contracts. Market makers may think 

that non-round trades are more informed and react to them more. However, private 

information content of trades is not observable which makes it hard to test the proposition 

empirically. As noted above, no model can explain the difference in price impacts if one 

group of trades contains more private information than the other. However, such a model 

exists empirically in our case.  

Option Market Methodology 

The public information midpoint is computed for the options market in two ways. 

The first method is a simple application of the BSM formula. It combines current stock 

price and past stock and option quote midpoints and doesn’t require historical data. The 

second method follows the logic of Equation (1). It predicts change in the quote midpoint 

by a range of public variables including the BSM implied price from the first method. 

The regression method is more sophisticated and requires historical data to estimate 

model parameters.  The two methods span a large spectrum of alternative methodologies. 

As the most precise method should be used to estimate the execution timing bias, 

we rely primarily on the regression method for this purpose. However, the results in the 

last section of the paper indicate that many investors use a similar to the BSM approach 

for their trade execution.    

∑
=

−−− ==
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The BSM method consists of two steps outlined in Equation (7). In the first step, 

average implied volatility over previous 30 minutes is computed26. The past implied 

volatility provides a mapping between option and stock prices, similar to coefficients in a 

regression. In the second step, current stock price27 is transformed into the implied option 

price with the past implied volatility and the BSM formula from the first step28.  

 

                                                 
26 Fifteen snapshots of implied volatility with two-minute time step 
27 Even if we use a stock price with one second lag to allow for possible latency between the markets, the 
results change very little.  
28 We assume no dividends and the risk free rate equal to 60-day LIBOR. Time to expiration is measured 
using calendar time. 
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The method can be viewed as a non-linear regression between option and stock 

prices. It is estimated on the previous 30 minutes and then predicts what option price 

should correspond to current stock price.  

The approach is close to being model free and requires only two main 

assumptions. First, implied volatility changes much slower than a stock price during a 

trading day. Indeed, after adjusting for market microstructure effects, implied volatility 

changes slowly and smoothly intraday29. The second assumption is that the implied 

option price is equal to the quote midpoint on average during 30 minutes before the trade 

transaction30.   

The second approach for computing the public midpoint is based on a linear 

regression (8). 
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The change in the option quote midpoint over the next hour is predicted by a 

battery of explanatory variables including information about limit order book and short-

term price history. The battery accounts for the BSM model by including the BSM 

implied bias, the difference between the BSM implied option price and the quote 

midpoint. The state of the limit order book is represented by the difference between the 

average quote midpoint across all exchanges and the NBBO quote midpoint. We also 

include the number of exchanges at the best ask and bid prices. Option and delta-adjusted 

stock price changes are taken for 12 five-second snapshots to accommodate the most 

recent price dynamics.  

The regression is estimated separately for each stock and six absolute delta (0.35 

and 0.65 cut-offs) and time-to-expiration (60 days cut-off) bins on each day with five 

second time steps31. The average coefficients across all days32 within each bin are then 

used for predictions. 

                                                 
29 The popularity of the BSM model among practitioners is partially driven by its ability to decompose fast-
moving option prices into the stock price component and the slow-changing residual called implied 
volatility. 
30 Over long periods of time quoted and public midpoints are equal on average. 
31 As price dynamics on each day is relatively independent, this methodology simplifies the computation of 
t-statistics, and spotting the outliers. 
32 The largest and smallest coefficient values are dropped to avoid potential outliers. 
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Table 5 reports average coefficients across all stocks for ten minute and one hour 

time horizons which are later used for price impact and trading cost estimation 

respectively. Changes in the option quote midpoint are highly predictable with R-squared 

of 10%. The BSM implied bias is the most significant variable, thus the BSM model 

indeed captures the first order variation in the public midpoint. The average BBO price is 

the second most significant variable. It is highly correlated with the implied bias but 

provides some additional information. Consistent with Muravyev, et al. (2012), the 

option market lags slightly behind the underlying stock; and option midpoint is mean-

reverting because of aggressive limit orders. The role of the short-term quote swings 

diminishes as time horizon increases. The coefficient estimates vary little across 

moneyness and time to expiration. 

Empirical analysis of the Bid-Ask Spreads and Price Impact 

Bid-Ask Spreads 

The empirical section starts by a comparison of four bid-ask spread measures in 

Table 233. The average daily quoted spread reflects trading costs for an investor who 

trades at random34. Such an investor will pay 8.4 cents for a round trip trade, which is 

20% of an average option price of 1.7 dollars. There are two related ways to reduce 

trading costs: the quoted spread timing and the execution timing. First, investors can 

trade when the quoted spread is below average. It can be evaluated by computing the 

quoted spread at the trade times. The spread is 6.6 cents which is a 1.8 cents 

improvement over the average spreads. Investors can also try to achieve an improvement 

over the current NBBO price. However, there is little NBBO price improvement in the 

options market as the effective spread is 6.4 cents and almost equal to the quoted spread. 

Indeed, more than 90% of option trades are executed at the NBBO quotes. 

                                                 
33 The public bid-ask spread is twice the difference between transaction price and the price implied by the 
BSM model based on the current stock price and the lagged implied volatility. The effective spread is the 
double difference between trade price and quote midpoint. The quoted spread is twice the difference 
between the relevant best quoted price and the quote midpoint at the moment of transaction. Finally, the 
average quoted spread is computed separately for each option from one-second snapshots on the transaction 
day and then matched to trades in a given option. 
34 End-of-the-day bid-ask spreads from OptionMetrics is a special case of the average quoted spreads with 
only one observation per day. 



12 
 

The last and most important way to improve on random execution is the execution 

timing. Investors rely on their own estimate of the true price which is more precise than 

the quoted midpoint. They buy when the public midpoint is close to the ask price and 

vice versa. The public bid-ask spread is only 4.5 cents, a stunning 1.9 cent improvement 

over the effective spread. The spread is even smaller at 4.2 cents if the public midpoint is 

computed with the BSM method. 

The comparison between the four bid-ask spreads confirms that the execution 

timing is an essential element of trade execution and provides a significant improvement 

over the baseline case of trading at random. 

Importantly, the execution timing affects not only the level of trading costs but 

also the relative ranking of the underlying stocks. For example, Pfizer and QLogic have 

the same public spreads of 4.3 cents, but very different quoted spreads of 7 and 9.8 cents. 

Unfortunately, our sample contains too few stocks to conduct a comprehensive cross-

sectional analysis.  

The execution timing bias has increased by several times over three years. Figure 

3 plots how the public spread decreases from 6.5 cents to 3.5 cents while the average 

quoted spread is unchanged at 8 cents, and the effective spread modestly decreased from 

7.5 to 6 cents. So the public spread decreases in half, while the conventional spreads 

change little.  

The trend clearly demonstrates the real effects of algorithmic trading on options 

costs; yet it cannot be detected with conventional measures. Our results for the options 

market are broadly consistent with results for the stock market documented by 

Hendershott, Jones, and Menkveld (2011). Indeed, there was little algorithmic trading 

before the Options Linkage connected all option exchanges in January 200335 which 

triggered a serious upgrade of exchange infrastructure. This historical observation 

explains the small execution bias at the beginning of the period. As the options 

algorithmic trading took off the execution bias steadily increased through 2006.  

Other time-series properties of average spreads are worth noting. Although 

trading costs for any particular stock are quite volatile, market average of trading costs is 

                                                 
35 Hendershott et al. (2011) argue that there was little algorithmic trading even in the stock market pre-
2003. 
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quite predictable and moves in a narrow range. In this sense, the risk of volatility in 

trading costs seems to be diversifiable at least during normal times. The spread time-

series fluctuate around a long term trend and have a positive autocorrelation, but little 

volatility clustering is observed, and the volatility of day-to-day changes in the spreads 

are constant over the period. 

The execution timing explains the main stylized fact about option bid-ask spreads, 

namely why dollar option spreads increase in absolute option delta. Figure 2 shows that 

for out-of-the-money (OTM) options the average quote spreads are below 7 cents, while 

the spread is 11 cents for ITM options. By contrast, the public spread is much flatter in 

delta. The spread increases from 4 to only 6 cents from OTM to ITM. For large trades, 

the relationship becomes completely flat with 5 cent spread for ITM options. 

Cho and Engle (1999) argue that option market makers immediately delta hedge 

after each trade and thus pay the spread in the underlying stock. However, the theory falls 

short empirically because it predicts that the difference between OTM and ITM spreads 

should be less than the underlying bid-ask spread. The bid-ask spread in the stock market 

is one penny, while the observed difference in spreads between OTM and ITM options is 

at least four times larger. After accounting for the execution timing the difference 

becomes two cents for trades of average size, and only one cent for large trades. These 

magnitudes are comparable to the bid-ask spreads in the underlying stock. Thus, the 

execution timing can explain why the option bid ask spread increases in absolute delta. 

Finally, Table 6 provides a more rigorous conditional analysis of the timing bias 

measured by Equation (5). The focus is on economic rather than statistical significance 

because the latter is granted by the large sample size.  The timing bias is increasing in 

absolute delta because stock price movements have a larger effect on ITM options, 

making execution timing easier. Average timing bias is 0.38 (or 38%), and the change 

from OTM (delta=25) to ITM (delta=75) will increase the bias by 0.1. Option market 

makers are aware of this effect as absolute delta becomes insignificant after including a 

variable for the number of exchanges quoting best price.  

The timing bias increases by 0.16 each year reflecting the increased utilization of 

algorithmic trading. As expected, the number of exchanges quoting the best price in the 

direction of a trade is a significant determinant of the bias. Each additional exchange 
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reduces the bias by 0.20. In a special case of only one exchange quoting the best price the 

bias is additionally larger by 0.15. Other explanatory variables have small economic 

magnitude. 

Price Impact 

The execution timing has direct implications for price impact. Figure 1 shows that 

the observed price impact consists of two components: the causal impact of trades and the 

expected change in the quote midpoint as it converges to the public midpoint.  

In the options market, the expected quote change is larger than the causal impact 

of trades. Table 4 compares observed and expected price impacts for one, ten and sixty 

minute horizons. The observed price impact is measured in a standard way as a dollar 

change in the quote midpoint following a trade transaction36. For the BSM method, the 

expected price impact equals to the implied bias because the quote midpoint should 

eventually converge to the BSM implied price. The regression method first estimates 

Equation (8) on regular time intervals separately for each time horizon and then predicts 

quote movements at the trade times. Although ten minutes may not be enough time for 

the public midpoint convergence, we follow the literature and use it as a baseline case. 

The observed price response to trades is rapid and large. The quote midpoint 

moves by 1.13 and 1.34 cents in one and ten minutes respectively. Although, it’s 

tempting to attribute the large price impact to asymmetric information, in fact, the timing 

bias constitutes most of it. The BSM method predicts that even without a trade the quote 

midpoint should move by 1.08 cents which is 81% of the observed price impact. The 

regression method predicts a 0.82 cent move or 61% of the observed impact. Thus, most 

of observed price impact corresponds to the expected changes in the quote midpoint. The 

public midpoint convergence is much faster after trades than during normal time. In the 

first minute, the regression predicts a 0.42 cent move, while the midpoint moves by 1.13 

cents. Trade transactions urge market makers to update quotes and center them around 

the public midpoint.  

                                                 
36 Five-minute horizon is standard for the equity market, but the options market is less liquid, and ten 
minutes is more appropriate. All price impacts and quote changes are adjusted for trade direction. 
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Price impact is often studied as a function of trade size to infer which trades are 

informed. Figure 5 this dependence with size measured in number of contracts. There are 

several stylized facts to note. The observed price impact exceeds one cent even for small 

trades. It is increasing for small trades and is almost flat (at two cents) for trades of more 

than thirty contracts. Trades of the smallest size of one lot have larger impact than other 

small trades. But the most pronounced pattern is that round-size trades have significantly 

lower (by half a penny) price impact than non-round ones. Finally, both the expected 

price impact and the implied bias are very close to the observed price impact both in 

shape and magnitude. 

To understand how trades change market perception about the fair price, the 

observed price impact should be adjusted by subtracting the expected quote changes.  

Figure 6 plots the price impact adjusted by both the BSM implied bias and by the 

expected quote changes from the regression method. The regression-adjusted price 

impact preserves basic properties of the observed price impact but the magnitudes are 

much smaller. The adjusted price impact is below one cent for any trade size and is 

increasing. The round-sized trades continue to have smaller impact but the difference 

decreases from 0.5 to 0.3 cents.  

The BSM adjusted price impact makes a big difference. It has many properties 

which are expected from price impact. It starts almost from zero as trades of one contract 

have impact of only 0.07 cents.  The price impact monotonically increases to about 0.6 

cents. More importantly, the difference between round and non-round sizes disappears. 

Finally, Table 7 presents a conditional analysis of the observed and adjusted price 

impacts. The quote midpoint changes are highly predictable with R-squared as high as 

9%. The observed price impact doesn’t depend on option characteristics such as absolute 

delta and time to expiration if the number of NBBO exchanges is included. As expected, 

the state of the options limit order book is a very significant predictor of the quote 

midpoint. For buy trades, each additional exchange at the ask price reduces the observed 

price impact by 0.57 cents. If only one exchange is standing at the ask price the quote 

midpoint will additionally increase by 0.56 cents.  

Time trend is very strong, the observed price impact increases by 0.55 cents each 

year. Price impact is increasing in volume, but the slope is only 0.2 cents per hundred 
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contracts. Coefficient for the level of option price is small confirming that option price 

impact should be measured in dollar rather than percentage terms. 

The coefficient for the expected price response from the regression method is 

0.78, and it becomes 0.92 in a univariate regression. The link between observed and 

expected changes is non-linear. If the expected change is large, then the coefficient is 

exactly one. But for expected changes of more than 5 cents, the coefficient is only 0.78.  

If the BSM adjusted price impact is chosen as a dependent variable striking 

changes are observed. Most coefficients become insignificant. R-squared falls to zero. 

Remarkably, the time trend and the number of NBBO exchanges, which are highly 

significant in all other cases, become insignificant here. These observations together with 

the analysis of non-round tradees in the next section indicate that option market makers 

use a model similar to the BSM approach to compute the public midpoint. 

Trades of Non-round Size  

The comparison of price impacts for trades of round and non-round size provides 

insights into what public midpoint model is used by a representative execution algorithm. 

The non-round trades pay smaller spreads and have larger observed price impact. As 

discussed earlier, the simplest public midpoint model, that can explain the difference in 

price impacts, is the one used by a representative algorithm. To estimate actual trading 

costs, we employed the most precise model. Contrary to this, the representative model 

doesn’t need to be the best or even unbiased predictor of the future quote midpoint. 

Round trades can be split into two subgroups: one with size divisible by ten and 

the other with size ending in five. As expected, the round lot effect is more pronounced 

for the round-ten than round-five trades. 

The best way to grasp the round lot effect is a graphical description in Figure 5. 

In the figure, average price impact is computed within each size category, thus treating 

each size equally. For trades exceeding 15 lots, the observed price impact is half a penny 

smaller for round-ten than non-round trades. Remarkably, the difference has essentially 

the same magnitude for all round-ten size categories. For the round-five trades, the 

difference is a quarter of a penny. Remarkably, the magnitude for round-five trades is 

half the magnitude for round-ten trades in all our regressions.  
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The BSM model for the public midpoint can explain the round-lot effect. Indeed, 

Figure 6 graphically demonstrates how the difference in price impacts disappears after 

subtracting expected changes in quote midpoint from the observed price impact. For the 

regression model, the difference decreases to a quarter of a penny. For the BSM model, 

the round size effect cannot be visually detected. Thus, the BSM model, or a very similar 

model, is used by a representative algorithm. 

The conditional analysis in Table 7 confirms the conclusions of Figure 5 and 6. 

We study the sample of all individual trades as well as the sample of averages for each 

trade size as in Figures 5 and 6.  The later sample is more appropriate because it gives 

equal weight to each size category. Indeed, there are many more 20-lot than 30-lot trades, 

thus 20-lot size category receives larger weight in the sample of individual trades. The 

regression includes size and the square root of size to control for global dependence 

between price impact and size. Option price is included to control for normalization of 

price impact which is measured as dollar difference rather than percentage of price. 

For the sample of individual trades, the round-ten and round-five trades have 0.5 

cent and 0.27 cent lower observed price impacts respectively. Adjusting the price impacts 

by the regression model reduces the round-lot differences in half to 0.23 and 0.11 cents. 

However, the BSM model explains almost all of the round lot effect, reducing the 

differences to 0.12 and 0.04 cents. 

For the sample of size categories37, the round-ten and round-five dummies are -

0.2 and -0.41 and are comparable to the sample of individual trades. However, for the 

adjusted price impacts the round lot difference in price impacts becomes very small. The 

regression adjusted price impacts differ only by 0.13 cents for round-ten trades. Both 

round-ten and round-five differences in price impacts completely disappear if the BSM 

model is used for the adjustment. Thus, the BSM model can completely explain the round 

lot effect. 

This result indicates that the BSM model, or a very similar one, is used by a 

representative algorithm and option market makers. Several results from the previous 

sections point in the same direction. The BSM adjusted price impact starts from zero and 

increases smoothly in size as shown by Figure 6. The number of NBBO exchanges and 

                                                 
37 We include only sizes of less than 100 lots, because there are too few trades for larger size categories. 
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the time trend become insignificant in the regression for the BSM adjusted price impact 

but are highly significant in all other regressions in Table 7. 

In untabulated results we find that non-round trades are smarter mostly because a 

non-round amount is placed at the best quotes rather than because investors want to trade 

a non-round amount. We added an interaction between two dummy variables: non-round 

trade size and only one exchange quoting best price in the regression of the observed 

impact. The coefficient for the interaction is 0.38 cents, and the coefficient for the round-

ten trades decreases from -0.28 to -0.16 cents.  

Interestingly, out of trades larger than fifteen contracts, 60% have size divisible 

by ten which is six times larger compared to the uniform probability case. It is hard to 

find a rational explanation for why there are so many round-ten trades. 

Conclusion. 
There are growing concerns that commonly used market microstructure measures 

are inadequate in the age of electronic trading. We show that these concerns are 

warranted. Moreover, we explain the exact mechanism which causes the problem and 

how conventional measures can be adjusted for it.    

The problem arises because conventional measures rely on the quote midpoint as 

an estimate of the true security value. This assumption is violated in practice because 

investors aggregate available public information into a more precise estimate. The 

measurement error in the quote midpoint manifests itself at the trade moments. Execution 

algorithms time purchases to the moments when their public information midpoint is 

close to or above the ask price, and thus is systematically above the quote midpoint.  

Because of the execution timing, actual trading costs and price impact in the 

options market are about half of what is implied by conventional measures. Not only 

levels are off, some securities and types of trades are more exposed to the execution 

timing than others.  These differences are not captured by conventional measures. For 

example, trades of non-round size have larger price impact than non-round ones. The 

conventional explanation would be that non-round trades contain more private 

information. However, the difference disappears after adjusting for the execution timing, 

which relies only on public information. 
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 Therefore, the adjusted measures are essential for making inferences about 

trading costs and price impact. The execution timing provides a glimpse in the secretive 

world of algorithmic trading and its deep impact on modern securities markets. 
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Figure 1 Examples of the execution timing. Panel A shows a stylized example there the 
public information midpoint is constant. Investors buy when the public midpoint is close 
ask and thus is above the quote midpoint. Panel B presents a more realistic example. The 
public midpoint decreases but the bid price remains unchanged for a while allowing 
investors to execute their sales. Panel C demonstrates how the observed price impact 
consists of the actual impact of trades and the expected changes in the quote midpoint. 
Time and price are set on the horizontal and vertical axes accordingly. Solid arrows 
denote the moment and direction of trades.   

 

 
 

Panel A.  

 

 
 

Panel B. 
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Panel C. 
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Figure 2 The public bid-ask spread is flatter in option delta than other spreads. 
The graph plots non-parametric estimates for five types of the bid-ask spreads as a 
function of absolute option delta. The spreads include the public spread (red line), the 
public spread for trades larger than nine lots (dashed magenta), quoted (blue), effective 
(dashed blue), and average quoted spread (dash-dot black). The public bid-ask spread is 
the double difference between the transaction price and the public midpoint. The public 
midpoint is based on a one hour forecast of option price from regression (8) which 
includes the option price implied from the stock market, average quote midpoint across 
all exchanges, number of exchanges quoting the best bid and ask prices, and lagged 
changes in option and stock prices. The effective spread is the double difference between 
the trade price and the quote midpoint.  The average quoted spread is computed from one 
day of one-second snapshots corresponding to each trade transaction. The spreads vary 
between 3 and 12 cents. The lines are estimated with a kernel regression based on the 
sample of 20 million trades for options on 39 stocks from April 2003 to October 2006. 
Option deltas are computed from the Black-Scholes-Merton formula.  
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Figure 3 Execution timing is becoming increasingly important over time. The graph plots 
the evolution of the public (red), the effective (blue), and the average quoted (black) bid-
ask spreads over the sample period. In the beginning, the spreads are comparable; 
however at the end, the public spread decreases in half, while other spreads change little. 
The decrease in the public spread coincides with the algorithmic trading boom in the 
options market. The public bid-ask spread is the double difference between the 
transaction price and the public midpoint. The public midpoint is based on a one hour 
forecast of option price from regression (8) which includes the option price implied from 
the stock market, average quote midpoint across all exchanges, number of exchanges 
quoting the best bid and ask prices, and lagged changes in option and stock prices. The 
effective spread is the double difference between the trade price and the quote midpoint.  
The average quoted spread is computed from one day of one-second snapshots for an 
option corresponding to each trade transaction. Each point is an average across all option 
trades on a given day. The spreads vary between 3 and 10 cents. The sample period is 
April 2003 through October 2006 
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Figure 4 Bid-ask spreads for trades of different size. The graph plots the public 
(red) and effective (blue) bid-ask spreads as a function of trade size measured in lots. The 
effective spread is the double difference between the trade price and the quote midpoint. 
The public bid-ask spread is the double difference between the transaction price and the 
public midpoint. The public midpoint is based on a one hour forecast of option price from 
regression (8) which includes the option price implied from the stock market, average 
quote midpoint across all exchanges, number of exchanges quoting the best bid and ask 
prices, and lagged changes in option and stock prices. Note that large trades, non-round 
trades (with size not divisible by 10), and one lot trades achieve better than average 
execution. Each data point is an average across all option trades of a given trade size. The 
distribution of trade size is highly skewed (roughly exponential). Average trade size is 
42, and its 50th and 95th percentiles are 10 and 114 contracts respectively. The effective 
spread is stable around 6.5 cents. The confidence bounds are computed separately for 
each trade size. 
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Figure 5 Observed price impact and expected changes in the quote midpoint. Most of the 
observed response of the quote midpoint to a trade is attributed to the convergence of the 
quote midpoint to the public midpoint and not to a causal effect of the trade. Change in 
the quote midpoint in 10 minutes after a trade (blue) is compared with the BSM implied 
bias (black), and expected changes in price if there were no trade (red) as a function of 
trade size. The implied bias is the difference between the option price implied by the 
BSM model from the current stock price and the lagged implied volatility and the option 
quote midpoint immediately before the trade. Expected quote changes (red) are computed 
based on the coefficients estimated from regression (8) which includes the implied bias, 
average quote midpoint across all exchanges, number of exchanges quoting the best bid 
and ask prices, and lagged changes in option and stock prices. The regression is based on 
regularly spaced 10-minute time steps. Each point is computed as a simple average across 
all option trades of a given trade size. The distribution of trade size is highly skewed 
(roughly exponential). Mean trade size is 42, and its 50th and 95th percentiles are 10 and 
114 contracts respectively. Trade size is reported in contracts each on 100 underlying 
shares, price impact is cents.  
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Figure 6 Price impact adjusted for the expected quote changes. 10-minute quote 
midpoint change is adjusted for predicted changes in the option price by subtracting the 
BSM implied bias (blue) or by subtracting a prediction from a regression model. The 
BSM implied bias is the difference between the option price implied by the BSM model 
from the current stock price and the lagged implied volatility and the option quote 
midpoint immediately before the trade. Expected quote changes (in red) are computed 
from regression (8) of the option midpoint 10-minute changes on the implied bias, 
average quote midpoint across all exchanges, number of exchanges quoting best bid and 
ask, as well as lagged changes in option and stock quote midpoints. The regression is 
based on regularly spaced 10-minute time steps. Each data point is computed as a simple 
average across all option trades of a given trade size. The distribution of trade size is 
highly skewed (roughly exponential). The mean trade size is 10, and its 50th and 95th 
percentiles are 42 and 114 contracts respectively. Trade size is reported in contracts each 
on 100 underlying shares, price impact is cents. The smoothing for the implied bias 
adjustment (in black) is done via a kernel regression. 
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Table 1.  Summary statistics. The variables include the execution timing bias for the 
BSM and the regression methods; the observed price impact and the expected changes in 
the quote midpoint for the BSM and regression methods for 10 minutes after transaction; 
absolute option delta; square root of time to expiration measured in calendar days; 
dummy for call options; time trend; option price and the bid-ask spread; dummy for 
buyer initiated trades; functions of trade size in lots. Round trades have size divisible by 
ten and larger than 15.  Time trend is in calendar years and normalized to zero at the 
beginning of the sample period. #ExchAtNBBO is number of exchanges quoting best 
price in the direction of the trade. Absolute delta is computed from the Black-Scholes-
Merton model. Dummy variables are denoted D(x). Mean, standard deviation, 25th, 50th, 
and 75th percentiles are reported. 
 

Variable Mean Std p25 p50 p75 

Timing Bias BSM, % 0.38 0.78 -0.09 0.29 0.82 

Timing Bias, % 0.32 0.69 -0.06 0.26 0.70 
Tt

tP +∆ , 10minutes, Cents 1.31 5.80 0.00 0.00 5.00 
BSM

tP̂∆ , Cents 1.10 2.39 -0.29 0.91 2.32 
Tt

tP +∆ ˆ , 10minutes 0.84 1.79 -0.15 0.65 1.67 

Abs(Delta) 0.45 0.20 0.30 0.44 0.59 

Sqrt(T-t) 8.57 5.10 5.00 6.71 11.09 

D(Call) 0.64 0.48 0.00 1.00 1.00 

TimeTrend 1.72 1.07 0.77 1.69 2.69 

OptionPrice, $ 1.70 1.94 0.60 1.10 2.10 

BidAsk, Cents 6.42 4.13 5.00 5.00 10.00 

D(Buy) 0.46 0.50 0.00 0.00 1.00 

Sqrt(Size) 4.14 5.03 1.73 3.16 4.47 

D(Size=1) 0.14 0.35 0.00 0.00 0.00 

D(Size > 15) 0.31 0.46 0.00 0.00 1.00 

Size ends in 10 & is >15 0.18 0.39 0.00 0.00 1.00 

#ExchAtNBBO 2.97 1.85 1.00 3.00 5.00 

D(#Exch = 1) 0.34 0.47 0.00 0.00 1.00 
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Table 2.  Summary statistics by stock. Each column reports an average across all option 
trades for a given underlying stock: stock and option prices in dollars; option trade size in 
number of contracts; dummy variable for buyer initiated trades; dummy variable for call 
options; number of exchanges quoting the best ask price for buy trades and vice versa for 
sell trades; the dummy variable which equals to one if the transaction price equals to the 
best quoted price. An average and standard deviation across 39 stocks are reported at the 
bottom. 

Ticker # Obs. 
Stock 
Price 

Option 
Price 

Trade 
Size 

D(Buy) D(Call) 
#Exch. 

at 
NBBO 

D(Trade 
at 

NBBO) 

AIG 318,758 61.8 2.5 29.7 0.45 0.62 2.9 0.88 

AMAT 413,626 18.7 1.1 27.6 0.45 0.71 2.8 0.81 

AMGN 550,588 66.9 2.6 18.2 0.45 0.70 2.8 0.83 

AMR 294,827 15.2 1.7 31.7 0.47 0.61 2.6 0.87 

AMZN 671,045 42 2.3 21.7 0.50 0.52 2.6 0.83 

AOL 52,235 15.1 1.1 35.6 0.43 0.75 2.4 0.67 

BMY 220,111 24.9 1.1 31.9 0.42 0.68 3.0 0.84 

BRCM 552,115 36.7 2.2 20.4 0.48 0.66 2.7 0.88 

C 475,215 46.6 1.5 35.8 0.42 0.67 3.0 0.86 

COF 181,717 67.9 3.1 18.6 0.43 0.56 2.2 0.84 

CPN 114,616 4.6 0.9 44.8 0.43 0.70 2.4 0.75 

CSCO 775,050 20.3 1.1 34.8 0.45 0.74 3.3 0.85 

DELL 505,896 32.7 1.4 36.5 0.46 0.66 3.1 0.89 

EBAY 1,245,534 63.7 2.9 17.1 0.49 0.64 2.8 0.87 

EMC 250,585 12.6 0.9 26.7 0.44 0.78 3.0 0.83 

F 203,197 10.6 0.9 37.6 0.46 0.66 3.1 0.84 

GE 613,642 32.5 1.2 28.2 0.41 0.73 3.2 0.82 

GM 619,137 30.1 2.1 29.3 0.47 0.52 2.8 0.88 

HD 371,755 37.2 1.6 19.4 0.42 0.70 3.0 0.86 

IBM 739,533 86.1 2.5 19.3 0.46 0.65 2.7 0.84 

INTC 1,227,606 24.3 1.3 31.6 0.45 0.71 3.4 0.83 

JPM 380,140 37.4 1.5 31.8 0.42 0.65 3.0 0.82 

KLAC 313,293 48.3 2.3 18.4 0.49 0.53 2.4 0.82 

MMM 273,757 89.3 2.6 14.7 0.45 0.61 2.7 0.84 

MO 572,192 64.3 2.4 37.7 0.44 0.67 2.8 0.88 

MSFT 969,972 26.3 1.1 41.4 0.45 0.74 3.2 0.83 

MWD 147,682 52.8 2.1 31.5 0.45 0.66 2.6 0.82 

NXTL 192,156 22.4 1.6 26.5 0.45 0.73 2.4 0.78 

ORCL 306,421 13 0.8 39.9 0.45 0.75 3.2 0.84 

PFE 710,795 28.3 1.2 34.7 0.42 0.70 3.1 0.85 

QCOM 749,730 45.3 2.4 22.6 0.48 0.69 2.9 0.89 

QLGC 243,209 38.2 2.1 14.9 0.47 0.63 2.4 0.87 

QQQ 1,962,807 34.2 1.2 50.9 0.50 0.54 3.0 0.71 
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QQQQ 1,840,357 39.1 1.0 54.8 0.52 0.49 3.3 0.91 

SBC 107,770 24.3 1.1 27.7 0.38 0.71 2.6 0.78 

SMH 386,808 35 1.6 60.7 0.47 0.60 2.9 0.88 

TYC 224,817 27.4 1.5 34.3 0.43 0.69 2.9 0.81 

XLNX 169,972 29.9 1.6 21.1 0.47 0.61 2.5 0.84 

XOM 536,609 55.4 1.9 27.1 0.44 0.71 3.3 0.89 

Average 20,485,275 37.47 1.69 30.45 0.45 0.66 2.85 0.84 

Std.Dev.   20.24 0.63 10.68 0.03 0.07 0.30 0.05 
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Table 3 Option bid-ask spreads by stock. The public bid-ask spread is the double 
difference between the transaction price and the regression public midpoint. The public 
midpoint is based on a one hour forecast of option price from regression (8) which 
includes the option price implied from the stock market, average quote midpoint across 
all exchanges, number of exchanges quoting the best bid and ask prices, and lagged 
changes in option and stock prices. The simple public bid-ask spread is the double 
difference between the transaction price and the price implied by the BSM model based 
on the current stock price and the lagged implied volatility.  The effective spread is the 
double difference between the trade price and the quote midpoint.  The average quoted 
spread is computed from one day of one-second snapshots corresponding to each trade 
transaction. Spreads are reported in cents. An average and standard deviation across 39 
stocks are reported at the bottom. 
 

Ticker 

Bid-Ask Spread, Cents  

Public 
BSM 
Public 

Effec-
tive 

Quoted 
Average 
Quoted 

AIG 5.5 5.1 7.8 8.1 10.6 

AMAT 3.9 3.6 5.3 5.6 7.0 

AMGN 4.8 4.4 7.4 7.8 10.2 

AMR 4.5 4.2 6.7 7.0 9.3 

AMZN 4.3 3.8 6.7 7.0 9.3 

AOL 5.1 5.1 6.0 6.0 7.0 

BMY 4.6 4.3 5.9 6.1 7.5 

BRCM 4.3 3.8 6.9 7.3 9.7 

C 4.9 4.5 6.3 6.5 8.0 

COF 5.8 5.4 8.5 9.0 12.1 

CPN 4.8 4.6 5.9 6.1 7.4 

CSCO 3.8 3.5 5.2 5.3 6.4 

DELL 4.0 3.6 5.8 6.0 7.5 

EBAY 4.9 4.3 7.4 7.8 10.1 

EMC 3.9 3.8 5.3 5.4 6.8 

F 4.4 4.2 5.6 5.7 6.9 

GE 4.4 4.2 5.6 5.7 6.8 

GM 5.0 4.8 7.5 7.8 10.1 

HD 4.7 4.4 6.3 6.5 8.1 

IBM 5.2 4.8 7.3 7.6 9.7 

INTC 3.8 3.5 5.2 5.4 6.4 

JPM 5.0 4.7 6.5 6.8 8.4 

KLAC 4.1 3.8 6.9 7.3 9.8 

MMM 6.0 5.6 8.4 8.8 11.5 

MO 5.8 5.4 7.9 8.2 10.4 

MSFT 3.8 3.5 5.2 5.4 6.4 

MWD 5.3 5.0 7.3 7.6 9.9 
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NXTL 5.0 4.7 6.4 6.5 8.2 

ORCL 3.7 3.5 5.1 5.3 6.4 

PFE 4.3 4.0 5.7 5.8 7.0 

QCOM 4.2 3.9 6.8 7.0 9.2 

QLGC 4.3 4.0 6.9 7.3 9.8 

QQQ 3.9 3.7 5.2 5.4 6.3 

QQQQ 2.6 2.3 4.7 5.0 6.2 

SBC 4.9 4.7 6.0 6.1 7.6 

SMH 3.7 3.5 5.7 6.0 7.9 

TYC 4.9 4.7 6.4 6.7 8.4 

XLNX 3.9 3.7 6.1 6.4 8.8 

XOM 4.7 4.2 6.7 6.9 8.7 

Average 4.5 4.2 6.4 6.6 8.4 

Std.Dev. 0.7 0.7 1.0 1.0 1.6 
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Table 4  Price impacts and expected changes in the quote midpoint. The observed price 
impact is computed as the change in the option quote midpoint in one, ten and sixty 
minutes following a trade. The BSM method expects that the quote midpoint will 
increase to the BSM options implied price. For the regression method, the expected quote 
midpoint changes are computed based on the coefficients estimated from regression (8) 
which includes the implied bias, average quote midpoint across all exchanges, number of 
exchanges quoting the best bid and ask prices, and lagged changes in option and stock 
prices. The regression coefficients are estimated separately for one, ten and sixty minute 
horizons. An average and standard deviation across 39 stocks are reported at the bottom. 
All variables are in cents. 
 

Ticker 

Observed Price Impact, Cents 
BSM

tP̂∆  

Expected Quote Change, Cents 

1 
minute 

10 
minutes 

1 hour 1 minute 
10 

minutes 
1 hour 

AIG 1.51 1.80 1.90 1.40 0.64 1.08 1.17 

AMAT 0.87 1.01 1.07 0.89 0.36 0.66 0.75 

AMGN 1.52 1.73 1.76 1.49 0.81 1.21 1.31 

AMR 1.45 1.79 2.07 1.24 0.42 0.87 1.13 

AMZN 1.42 1.64 1.82 1.43 0.76 1.16 1.21 

AOL 0.48 0.65 0.73 0.45 0.13 0.31 0.44 

BMY 0.92 1.12 1.22 0.77 0.24 0.53 0.65 

BRCM 1.64 1.77 1.86 1.58 0.90 1.31 1.36 

C 0.96 1.13 1.20 0.91 0.34 0.66 0.73 

COF 1.82 2.26 2.53 1.58 0.76 1.24 1.39 

CPN 0.81 1.00 1.13 0.64 0.11 0.32 0.55 

CSCO 0.74 0.93 1.02 0.84 0.26 0.57 0.71 

DELL 1.06 1.23 1.35 1.10 0.45 0.81 0.91 

EBAY 1.59 1.76 1.87 1.57 0.88 1.25 1.29 

EMC 0.74 0.93 1.06 0.76 0.21 0.51 0.69 

F 0.78 0.98 1.13 0.69 0.15 0.42 0.57 

GE 0.67 0.84 0.93 0.69 0.22 0.46 0.60 

GM 1.61 1.95 2.09 1.36 0.47 1.00 1.27 

HD 1.03 1.19 1.27 0.94 0.39 0.72 0.82 

IBM 1.34 1.53 1.59 1.30 0.63 1.00 1.07 

INTC 0.75 0.95 1.03 0.89 0.31 0.62 0.74 

JPM 0.94 1.18 1.27 0.90 0.33 0.66 0.79 

KLAC 1.61 1.75 1.75 1.57 0.97 1.31 1.41 

MMM 1.64 1.87 1.92 1.43 0.72 1.13 1.22 

MO 1.48 1.78 1.94 1.29 0.52 0.93 1.09 

MSFT 0.77 0.95 1.06 0.87 0.25 0.57 0.74 

MWD 1.41 1.64 1.80 1.15 0.55 0.92 1.01 

NXTL 0.96 1.11 1.19 0.88 0.36 0.66 0.71 

ORCL 0.75 0.94 1.02 0.81 0.23 0.53 0.70 
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PFE 0.83 1.02 1.15 0.82 0.26 0.56 0.68 

QCOM 1.48 1.59 1.67 1.47 0.82 1.21 1.32 

QLGC 1.52 1.72 1.80 1.48 0.74 1.18 1.31 

QQQ 0.56 0.79 0.83 0.74 0.29 0.58 0.65 

QQQQ 1.01 1.23 1.29 1.17 0.48 0.91 1.01 

SBC 0.68 0.85 0.92 0.64 0.20 0.43 0.56 

SMH 1.21 1.41 1.46 1.12 0.54 0.94 1.04 

TYC 0.99 1.20 1.31 0.89 0.32 0.64 0.80 

XLNX 1.35 1.50 1.55 1.26 0.66 1.04 1.13 

XOM 1.33 1.54 1.55 1.23 0.51 0.92 1.01 

Average 1.13 1.34 1.44 1.08 0.47 0.82 0.94 

Std.Dev. 0.37 0.40 0.42 0.32 0.24 0.30 0.28 
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Table 5 Expected changes in the option quote midpoint. A regression of option midpoint changes for ten minutes and one hour on the 
explanatory variables as well as lagged changes in the option and delta-adjusted stock quote midpoints.  

ti tititittiti it

BBO

tt

BSM

ttTt dPdSPPPPPP εααααααα ++∆+++−+−+=− ∑∑ = ∆−+∆−∆−= ++

12

1 16

12

1 443210 )(ExchAsk#ExchBid#)ˆ()ˆ(   (8) 

The explanatory variables include the BSM implied bias (the difference between the price predicted by the BSM model and the quote 
midpoint), average quote midpoint across all exchanges minus the current quote midpoint, and number of exchanges at the best ask 
and best bid. The regression is estimated separately for each stock and six absolute delta (0.35 and 0.65 cut-offs) and time-to-
expiration (60 days cut-off) bins within each day, average coefficients are reported. The lagged quote changes are based on twelve 
regularly spaced five-second time periods (only the first two and the sum of all twelve coefficients are reported). All quote changes are 
measured in cents. 
 

Days-to-
Expiration 

Money
-ness 

Inter-
cept 

BSM 
Implied 
Bias 

Average 
BBO 
Price 

# Exch 
at Bid 

# Exch 
at Ask 

Stock price changes 
adjusted for option delta 

Changes in option quote 
midpoint, 5 seconds 

 
t-1 t-2 

Sum t-1, 
t-12 

t-1 t-2 
Sum t-1, 
t-12 

R2 

T = 10 minutes 

short-term OTM -0.02 0.26 0.27 0.02 -0.01 0.38 0.24 1.84 -0.17 -0.15 -1.22 0.17 

long-term OTM -0.03 0.33 0.13 0.07 -0.07 0.39 0.25 1.90 -0.20 -0.18 -1.49 0.13 

short-term ATM -0.08 0.40 0.31 0.05 -0.05 0.39 0.24 1.78 -0.14 -0.13 -1.15 0.12 

long-term ATM -0.09 0.44 0.17 0.12 -0.11 0.40 0.25 1.91 -0.16 -0.15 -1.30 0.12 

short-term ITM -0.27 0.54 0.23 0.09 -0.07 0.32 0.19 1.28 -0.12 -0.12 -1.06 0.09 

long-term ITM -0.17 0.51 0.18 0.13 -0.11 0.32 0.19 1.34 -0.14 -0.14 -1.22 0.11 

T = 1 hour 

short-term OTM -0.04 0.31 0.39 0.11 -0.09 0.27 0.13 0.66 -0.07 -0.07 -0.63 0.18 

long-term OTM -0.08 0.42 0.29 0.12 -0.11 0.25 0.11 0.46 -0.09 -0.09 -0.77 0.13 

short-term ATM -0.15 0.45 0.44 0.07 -0.06 0.24 0.10 0.33 -0.08 -0.08 -0.82 0.10 

long-term ATM -0.16 0.53 0.32 0.10 -0.08 0.23 0.09 0.26 -0.08 -0.08 -0.74 0.08 

short-term ITM -1.03 0.63 0.33 0.06 -0.02 0.13 0.01 -0.42 -0.05 -0.06 -0.69 0.08 

long-term ITM -0.53 0.56 0.35 0.02 0.02 0.15 0.04 -0.27 -0.10 -0.10 -1.02 0.08 
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Table 6 The execution timing bias, a conditional analysis. Each column reports a 
regression of the timing bias on absolute delta, square root of time to expiration in days, 
dummy for call options, dummy for buy transactions, square root of trade size in 
contracts, dummies for trades of one lot, number of exchanges quoting best price in the 
trade direction, option price and bid-ask spread, time trend in years, and finally, a dummy 
for a single exchange quoting the relevant best price. The last column reports a regression 
for the subsample of trades with more than one exchange quoting the relevant best price. 
The timing bias is defined as the expected one hour change in quote midpoint from 
regression (8) divided by the average quoted spread for a given option. T-statistics based 
on robust standard errors, which are clustered by date, are reported in parentheses. Stock 
fixed effects are included but not reported.  
 

Execution Timing, 
% 

Full 
Sample 

Full 
Sample 

Full 
Sample 

# Exchan-
ges > 1 

Abs(Delta) 19.367 19.492 0.412 -11.140 

 (46.11) (45.88) (0.90) (19.44) 

Sqrt(T-t) -0.009 -0.011 -1.133 -1.551 

 (0.58) (0.74) (63.15) (66.01) 

D(Call) -2.028 -2.189 1.081 0.876 

 (16.01) (18.17) (11.44) (7.44) 

TimeTrend 6.720 6.743 16.450 20.319 

 (54.83) (55.48) (102.42) (93.90) 

OptPrice 4.068 4.097 0.512 -2.149 

 (77.74) (77.84) (7.38) (38.00) 

BidAsk -3.553 -3.570 1.578 3.066 

 (97.72) (96.72) (35.88) (117.86) 

D(Buy)  -3.564 -6.710 -5.974 

  (9.05) (20.03) (19.84) 

Sqrt(Size)  -0.160 0.047 0.002 

  (23.30) (10.49) (0.52) 

D(Size=1)  1.843 -2.696 -1.258 

  (6.66) (14.90) (6.01) 

#ExchAtNBBO   -19.552 -21.649 

   (284.99) (384.06) 

D(#Exch=1)   15.500  

   (41.67)  

R
2
 0.05 0.06 0.33 0.26 

N, 1000s 20484 20483 20483 13576 
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Table 7 Conditional analysis of observed price impact. The observed price impact is 
measured as dollar change in the quote midpoint in ten minutes after a trade. Independent 
variables include the expected quote changes from regression (8), absolute delta, square 
root of time to expiration in days, dummy for call options, dummy for buy transactions, 
square root of trade size in contracts, dummies for trades of one contract, number of 
exchanges quoting best price in the trade direction, option price and bid-ask spread, time 
trend in years, and a dummy for a single exchange quoting the relevant best price. The 
last column uses the difference between the observed price response and the BSM 
implied bias as the dependent variable. Nonlinearity is examined by including a variable 

20)ˆ( <<
+ − xt

Tt

t IPP which equals expected quote change if it’s between zero and two cents, 

and zero otherwise. T-statistics based on robust standard errors, which are clustered by 
date, are reported in parentheses. Stock fixed effects are included but not reported.  
 

  
Tt

tP +∆  
Tt

tP +∆  
Tt

tP +∆  
BSM

t

Tt

t PP ˆ∆−∆ +

 

Tt

tP +∆ ˆ , Cents 
 

0.776  0.584 
 

  
(66.92)   (32.60) 

 
Abs(Delta) 0.102 -0.127 -0.315 0.201 

 
(4.20) (5.77) (13.53) (8.87) 

Sqrt(T-t) -0.030 -0.005 -0.005 0.008 

 
(33.51) (5.68) (5.35) (10.93) 

D(Call) -0.018 -0.046 -0.041 -0.079 

 
(2.86) (7.25) (6.50) (11.28) 

TimeTrend 0.552 0.228 0.201 0.043 

 
(92.37) (33.31) (34.23) (9.75) 

OptPrice, $ 0.158 0.079 0.082 0.010 

 
(38.50) (20.01) (19.82) (2.65) 

BidAsk, Cents 0.061 0.017 0.012 0.008 

 
(26.70) (7.74) (6.08) (4.97) 

D(Buy) 0.116 0.144 0.145 0.087 

 
(7.88) (8.98) (9.08) (4.43) 

Sqrt(Size) 0.019 0.019 0.018 0.018 

 
(50.26) (50.22) (50.43) (48.73) 

D(Size=1) -0.160 -0.079 -0.076 -0.058 

 
(16.43) (8.51) (8.17) (6.06) 

#ExchAtNBBO -0.571 -0.198 -0.162 -0.015 

 
(139.13) (27.08) (28.51) (5.11) 

D(#Exch=1) 0.562 0.194 0.155 -0.006 

 
(35.07) (19.41) (16.16) (0.65) 

20
ˆ

<<
+∆ x

Tt

t IP  
 

0.435 

  
(22.46) 

52
ˆ

<<
+∆ x

Tt

t IP  
 

0.366 
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(21.90) 

x

Tt

t IP <
+∆ 5

ˆ  
 

0.201 

  
(15.49) 

R
2
 0.05 0.09 0.09 0.00 

N, 1000s 20,483 20,483 20,483 20,483 
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Table 7 Comparison of the observed and adjusted price impacts for round and non-round 
trades. The observed price impact is measured as dollar change in the quote midpoint in 
ten minutes after a trade. For the regression method, the expected quote changes from 
regression (8) are subtracted from the observed price impact. For the BSM method, the 
difference between the BSM implied bias and the observed impact is taken. Independent 
variables include trade size and square root of it as well as option price. Round trades are 
considered in two subgroups: one with size divisible by ten and the other with size ending 
in five. For both subgroups, only trades with size larger than fifteen lots are included, as 
the round lot effect should be observed only for large enough trades. Dummy for size 
greater than fifteen lots is included so that round-size dummies estimate proper 
conditional means. The analysis is done for two sample variations:  all individual trades 
as well as the sample of averages for each trade size as in Figures 5 and 6.  Only size 
categories of less than hundred lots are included in the later sample. For the sample of 
individual trades, t-statistics are based on robust standard errors, which are clustered by 
date. For the sample of size categories, robust t-statistics are reported.  
 

 Individual Trades Size Categories 

Price Impact, 
Cents 

Tt

tP +∆  Tt

t

Tt

t PP ++ ∆−∆ ˆ  BSM

t

Tt

t PP ˆ∆−∆ +  Tt

tP +∆  Tt

t

Tt

t PP ++ ∆−∆ ˆ  BSM

t

Tt

t PP ˆ∆−∆ +  

Size ends in 5 -0.271 -0.109 -0.036  -0.199 -0.045 0.031 

 
(25.07) (10.83) (3.52)  (6.09) (2.24) (1.68) 

Size ends in 10 -0.536 -0.234 -0.123  -0.414 -0.126 -0.006 

 
(57.10) (30.09) (16.14)  (12.45) (6.25) (0.31) 

Size > 15 0.665 0.271 0.120  0.156 0.016 -0.041 

 
(59.77) (27.52) (12.18)  (1.78) (0.34) (1.21) 

Size -0.000 -0.000 -0.000  -0.017 -0.006 -0.002 

 
(5.89) (6.80) (7.07)  (2.62) (1.69) (0.73) 

Sqrt(Size) 0.011 0.024 0.028  0.328 0.165 0.104 

 
(6.29) (14.53) (17.26)  (3.23) (3.02) (2.90) 

OptPrice, $ 0.205 0.053 0.042  1.029 0.731 0.705 

 
(65.74) (23.85) (18.61)  (2.89) (3.73) (5.30) 

R2 0.01 0.00 0.00 
 

0.85 0.83 0.76 

N   20,483,318   
 

  99   

 


