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Abstract

The expected returns of short maturity options are large and negative, implying

a negative variance risk premium. We find that the magnitude of this negative risk

premium is monotonically decreasing with option maturity. The risk premium becomes

insignificant for maturities beyond 6 months and the cost to insure the variance risk

using long maturity options is 6 bps per month. In the context of a classical asset

pricing model, this pattern suggests that variance betas should also be declining with

maturity because the risk premium is proportional to the factor loading. However,

variance betas are increasing with option maturity, challenging a one-factor model of

the variance risk. A one-factor model of the short-term variance risk (level) fails to

explain the cross-section of option returns and is forcefully rejected by asset pricing

tests. We identify a slope factor in the term structure of risk neutral variances and find

it crucial in explaining the cross section of option returns. The slope and level factors

combined explain over 90% of the option return variations.
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1 Introduction

The volatility of stock returns is uncertain and options pay off when the volatility rises,

offering a hedge against this volatility risk. Therefore, investors are willing to pay a pre-

mium to hold options and there is ample evidence documenting this negative volatility risk

premium. The Black-Scholes implied volatilities of options are systematically higher than re-

alized volatilities (Jackwerth and Rubinstein (1996)). The expected return of short-maturity

index options is about −3% per week (Coval and Shumway (2001)), providing strong evi-

dence of this negative volatility risk premium. Bakshi and Kapadia (2003) formalizes the

intuition of using delta-hedged option gains to measure the volatility risk premium and also

provides empirical support of a negative volatility risk premium. Carr and Wu (2009) com-

pares the prices of synthetic variance swaps with realized variance to quantify the magnitude

of the variance risk premium of both indices and individual stocks1. The stylized facts are

expected option returns are large and negative, indicating a negative variance risk premium.

In a mainstream asset pricing model, the risk premium is determined by the factor risk

premium and factor loading. Given a negative variance risk premium, options with higher

variance beta should earn more negative returns. The variance beta is increasing with option

maturity because long maturity options are more sensitive to the change of the variance. For

instance, the first derivative of option price with respect to volatility (vega) is approximately

proportional to the square root of maturity in both the Black-Scholes model and a stochastic

volatility model (Hull and White (1987)). We focus on returns of delta hedged portfolios

and this sensitivity is somewhat attenuated by the gains and losses from hedging. Overall,

a long-maturity option still has a higher variance beta and empirically the variance beta

is monotonically increasing with option maturity. As a result, the magnitude of the risk

premium should be larger for options with longer maturity.

We test this prediction by examining index option returns across maturities and we find

that the magnitude of option return is monotonically decreasing with option maturity. For

the S&P 500 index (SPX), only the two shortest maturity options display a significantly neg-

ative average return. For SPX options of longer than 6 months till expiration, the expected

returns are indistinguishable from 0 and the options of longer than 12-month maturity on

average return -0.06% (6 bps) per month. The same holds true for other indices and in

some occasions the long term option mean returns are even positive2. This is in sharp con-

1In principle, the variance risk premium is different from the volatility risk premium, although the two
are very closely related. We are not making a particular distinction of the two in this study.

2A similar pattern is documented in currency options as in Low and Zhang (2005).
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trast with the significantly negative expected returns found in short-maturity options. Jones

(2006) finds that the negative returns of short maturity options are too large to be explained

by the variance risk. While at the other end of the maturity spectrum, we document that

the returns of long maturity options are too small to be consistent with the variance risk pre-

mium and long maturity contracts essentially provide investors with free insurance against

the variance risk. More importantly, options with higher variance beta consistently earn less

negative risk premium just as the growth portfolios have higher CAPM beta but earn lower

returns (Fama and French (1993) and many others).

We find that the discrepancy comes from the one-factor structure of the variance risk

premium. Following the VIX calculation methodology3 and Carr and Wu (2009), we compute

the risk neutral variances at 30-day and 365-day maturities. Besides the well documented

30-day short-term variance (level), we construct a slope factor as the difference between

the 365-day and 30-day risk neutral variances. Using the delta-hedged options on 4 major

indices as test assets, we estimate the risk premia of both the level and slope factors under

the stochastic discount factor framework, as advocated by Cochrane (2005). The short-term

level factor is important and negatively priced as documented in the existing literature (Ang,

Hodrick, Xing, and Zhang (2006), Carr and Wu (2009)). However, the level factor by itself

does not account for any cross-section variation of the expected option returns. Naturally,

this one factor model is forcefully rejected by the over-identifying restriction in the GMM

test (Hansen and Singleton (1982)). The slope factor is far more important than the level

factor in explaining the return spreads between different options.

The two factors collectively explain majority of the cross-section variation and the GMM

test fails to reject the model at all conventional levels. The level and slope factors are

constructed using options on the proxy of the market portfolio at 2 maturities and yet

explain the returns of options written on all assets across all maturities. We also assess

the economic significance of both factors. The risk premium for the level factor is −1.4%

per month and that of the slope factor is larger in magnitude, 1.5% per month. Long-term

options load positively on the slope factor, whereas the loadings of short-term options on the

slope factor are insignificant. This explains the upward sloping term structure of expected

option returns. Overall, long-term options have high factor loadings on both the level and

slope factors which approximately offset each other and thus earn close to 0 returns.

Our approach complements the existing literature on the variance risk premia. The

variance risk premium in options has been estimated either as the difference between the

3http://www.cboe.com/micro/vix/vixwhite.pdf
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risk neutral variance and the realized variance (Carr and Wu (2009), Bollerslev, Tauchen,

and Zhou (2009)), or as a parameter in the parameter space that minimizes the option pricing

errors (Bates (2000), Pan (2002)). Our asset pricing approach helps to identify common risk

factors in option markets and facilitates comparison with other classical risk factors in the

asset pricing literature. We can also directly asses the economic significance of the variance

risk premia and test the importance of a factor with the presence of other factors. It is well

known that the option payoff is skewed and leptokurtic, which favors our GMM approach

because the GMM does not impose any distributional assumptions. Moreover, under the

SDF framework, we can use a a straightforward metric to distinguish different models of the

variance risk premium. A one-factor model of the volatility risk premium is rejected by the

the GMM J-test while our two-factor model does pass the test.

The slope factor is related to several recent studies that show the advantage of a two-

component model of volatility4. Bates (2000) and Xu and Taylor (1994) study the impli-

cations of two-factor stochastic volatility models for option pricing. Christoffersen, Jacobs,

Ornthanalai, and Wang (2008) proposes a two-component model, one short-term and one

long-term, and shows that the model better fits the option prices. Egloff, Leippold, and Wu

(2010) also finds the two-component volatility model better explains the variance swap rates

at different maturities. Our proposed slope factor proxies the difference between the long-

and short-term variance in those models. And we further show that the slope factor is not

only helping to reduce option pricing errors but indispensable in explaining expected option

returns. We propose the two-factor model because it is unequivocally favored by traditional

asset pricing measures. It is imperative to make the distinction because mis-specifying the

two-factor model as a one-factor model leads to large welfare loss for investors (Zhou and

Zhu (2012)).

We further investigate the economic content of the slope factor. Adrian and Rosenberg

(2008) finds that the long-term volatility estimated using stock returns forecasts macroeco-

nomic conditions. Consistent with their findings, the slope factor of the risk neutral variances

also predicts the output of the industrial sector of the economy. This result is reminiscent

of the slope of the yield curve forecasting macroeconomic activity (Harvey (1988), Estrella

and Hardouvelis (1991)). As a result, the slope factor should be positively priced by the

intertemporal capital asset pricing (ICAPM) intuition. Moreover, the dynamics of the slope

factor is also examined by expectation hypothesis regressions. We first form portfolios of

4There is also a vast literature that shows two-factor volatility models better describe the dynamics of
the stock return and foreign exchange rate volatilities, including but not limited to Alizadeh, Brandt, and
Diebold (2002), Bollerslev and Zhou (2002), Chacko and Viceira (2003), Chernov, Gallant, Ghysels, and
Tauchen (2003), and Brandt and Jones (2006).
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buying long-maturity straddles and shorting short-maturity straddles, both delta-hedged

and regress the returns of this portfolio on the lagged slope factor. This specification mimics

the regression of long bond excess return on yield spreads in the fixed income literature.5

Under the null hypothesis of a constant slope premium, the coefficient should be 0. This

null hypothesis is strongly rejected for options on all 4 major indices across various long

maturities. All point estimates are negative and the average monthly non-overlapping R2 is

above 10%.

Liu and Pan (2003) shows that in a one-factor stochastic volatility model an investor’s

optimal portfolio includes a short position in options. In the presence of a second volatility

factors, the optimal portfolio is shown to contain a long position in the long-term variance

contract and a short position in the short-term variance contract (Egloff, Leippold, and

Wu (2010), Zhou and Zhu (2012)). The strategy is equivalent to buying (delta-hedged)

long-maturity options and shorting (delta-hedged) short-maturity options, also know as the

calendar spread. Our results provide empirical evidence for the optimal option portfolio

allocation and hedging volatility risk. The calendar spread positively loads on the slope

factor and offers investors an attractive risk and return trade off, generating an annualized

Sharpe ratio of 1.2. More importantly, this strategy is not exposed to the sudden crashes

because the strategy also loads positively on the short-term level factor. The largest monthly

loss suffered was −3% and the overall realized skewness is positive.

Our paper relates to the burgeoning literature that examines expected option returns

in the asset pricing framework. Goyal and Saretto (2009), and Cao and Han (2012) both

document a large volatility premium in the cross-section of individual stock options. We focus

on expected index option returns across maturities and stress the importance of a two-factor

model for the volatility risk premium. Broadie, Chernov, and Johannes (2009) raises some

concerns about option returns using only unhedged put options because of sampling problems

and the impact of the underlying asset. We follow their suggestions by mainly examining

delta-hedged option straddle returns, which alleviates the sampling problem. And our main

results are robust to the choice of call, put, or straddle options.

In the next section, we present the basic framework. In section 3, we introduce the data

and present basic properties of the index options. In Section 4, we detail the calculations of

delta-hedged option portfolio returns and the risk neutral variance. Section 5 presents the

main results and Section 6 concludes.

5For example, Keim and Stambaugh (1986) and Fama and French (1989).
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2 Framework

In this section, we present the theoretical framework under which we analyze the relation

between the delta hedged option returns with the variance risk premium. The framework

naturally generalizes the analysis in Bakshi and Kapadia (2003) to allow the stock return

variance to be driven by a set of state variables.

2.1 Model Setup

Assume that the price dynamics in which the return volatility is stochastic,

dSt

St

= µs
t(St, σt)dt+ σtdWt, (1)

and the volatility is driven by a set of state variables under the physical measure,

dXt = µX
t (Xt)dt+ ΣX(X)dBt (2)

σt = b′Xt (3)

dσt = b′µX
t (Xt)dt+ b′ΣX(X)dBt (4)

where µX(Xt), b ∈ R
k, Bt denotes a k-dimensional Brownian motion with ΣX(X)ΣX(X)′

being positive definite and symmetric, and ρ ∈ R
k denotes the correlation between dWt, and

dBt. Note that we can derive the dynamics of the variance by letting vt = σ2
t and applying

Ito’s lemma,

dvt = (2σtb
′µX

t (Xt) + b′ΣX(X)ΣX(X)′b)dt + 2σtb
′ΣX(X)dBt. (5)

It is clear that the volatility and variance are driven by the same set of state variables and

therefore we will not particularly distinguish the volatility and variance risk premia.

2.2 Delta Hedging Gains

Following Bakshi and Kapadia (2003),

Ct+τ = Ct +

∫ t+τ

t

∂Cu

∂Su

du+

∫ t+τ

t

∂Cu

∂σu

dσu +

∫ t+τ

t

budu, (6)
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where bu = ∂Cu

∂u
+ 1

2
σ2
uS

2
u
∂2Cu

∂S2
u

+ 1
2
b′ΣX(X)ΣX(X)′b∂

2Cu

∂σ2
u

+ b′ΣX(X)ρσuSu
∂2Cu

∂Su∂σu

.

The valuation equation for the call option is

1

2
σ2S2∂

2C

∂S2
+

1

2
b′ΣX(X)ΣX(X)′b

∂2C

∂σ2
+ b′ΣX(X)ρσS

∂2C

∂S∂σ
+ rS

∂C

∂S

+b′(µX
t (Xt)− γ(Xt))

∂C

∂σ
+

∂C

∂t
− rC = 0, (7)

where γ(Xt) ≡ −Cov(dmt

mt

, dXt) and measures the risk premium of the k-dimensional Brow-

nian motion. Rearranging the above equation and we have

bu = r(Cu − Su

∂Cu

∂Su

)− b′(µX
u (Xu)− γ(Xu))

∂Cu

∂σu

(8)

Substitute this into (6), we have

Ct+τ = Ct +

∫ t+τ

t

∂Cu

∂Su

du+

∫ t+τ

t

∂Cu

∂σu

dσu

+

∫ t+τ

t

(r(Cu − Su

∂Cu

∂Su

)− b′(µX
u (Xu)− γ(Xu))

∂Cu

∂σu

)du, (9)

We further express the dσ as in equation (4) and obtain

Ct+τ = Ct +

∫ t+τ

t

∂Cu

∂Su

du+

∫ t+τ

t

r(Cu − Su

∂Cu

∂Su

)du

+

∫ t+τ

t

b′γ(Xu)
∂Cu

∂σu

du+

∫ t+τ

t

b′ΣX(X)
∂Cu

∂σu

dBt, (10)

therefore the delta hedged gain Πt,t+τ can be written as

Πt,t+τ = Ct+τ − Ct −

∫ t+τ

t

∂Cu

∂Su

du−

∫ t+τ

t

r(Cu − Su

∂Cu

∂Su

)du

=

∫ t+τ

t

b′γ(Xu)
∂Cu

∂σu

du+

∫ t+τ

t

b′ΣX(X)
∂Cu

∂σu

dBt, (11)

The expected gain is

E[Πt,t+τ ] =

∫ t+τ

t

E[b′γ(Xu)
∂Cu

∂σu

]du. (12)

Similar to the findings in Bakshi and Kapadia (2003), the delta hedged gain is equal to

the sum of the risk premia of all state variables that drive the volatility (variance). The

general setup, however, does not directly identify the relevant factors. And our aim is not
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to estimate a parameterized version of the model but to establish that the delta-hedged

option gains could relate to multiple factors. This allows for more complex structures in the

variance risk premium and expected option returns.

3 Data

Our options data are from OptionMetrics, for the sample period between January 1996

and December 2011, a total of 192 months. We filter out the daily closing prices (by the

average of best bid and offer) of options on 4 major indices, S&P 500 (SPX), NASDAQ

Composite (NDX), Dow Jones Industrial Average (DJX), and S&P 100 (OEX), and drop

the observations in which option prices violate the no-arbitrage bounds. The DJX options

started trading in the final quarter of 1997 and the sample size for DJX options is therefore

only 170 months. At the end of each month, we choose at-the-money (ATM) options of 5

different maturities, wherever available. Summary statistics of the 5 groups are presented in

Table 1. There are four panels, each corresponding to a specific option index with different

maturity, i.e, S&P 500, NASDAQ, DOW JONES, and S&P 100, in panel A, B, C and D

individually. In each panel, we report the average characteristics across maturity groups.

The first maturity we choose is the options that mature in the 2nd calendar month since

the month end. The average maturity is 50 days. Similarly, the second maturity represents

options that mature in between the 4th and 6th month since the month end has an average

of 141 days till maturity. The third group matures in between the 7th and 9th month after

the month end and is on average about 230 days till maturity. The 4th group matures in

between the 10th and 12th month after the month end and is on average about 320 days till

expiration. Finally, the longest maturity group covers options with more than 650 days till

expiration on average, and can be as long as 866 days for S&P 100 index.

Table 1 about here.

Within each maturity group, we further choose the option straddle, a call and a put with

the same strike price, of which the strike price is closest to the index level and also require

the moneyness (S/K) within 0.9 and 1.1. This filter eliminates some long term options and

reduces the number of observations for some groups because the strike price is relatively

coarse for certain long maturity options, especially for OEX options at the beginning of the

sample period. The average moneyness of all option straddles, of all 4 indexes across all 5
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maturities, is 1.00 as shown in Table 1. The absolute value of the deviation of moneyness

from 1 is between 0 and 0.01 on average, confirming that we are picking ATM options. For

those ATM option straddles, the deltas should be close to 0. For the shortest maturity group,

deltas are between 0.04 and 0.07 for the 4 indexes. Option gammas are higher for short-term

options as there is more convexity as time approaches expiration. The option time decay,

measured by theta, becomes more and more negative as maturity date approaches. In the

Black-Scholes model, the gains due to option gamma and theta offset each other on average.

And option vegas, also shown in Table 1, are increasing with maturity approximately at the

rate proportional to the square root of maturity.

4 Methodology

We focus on delta-hedged option returns so that the underlying index movement is not

directly driving the option returns as cautioned by Broadie, Chernov, and Johannes (2009).

Investing in a delta-hedged call option can be understood as a zero cost investment because

the call option premium is financed by the short sale proceeds and the remaining proceeds

is invested in risk free bonds. Following Cao and Han (2012), the dollar gain of buying a

delta-hedged call option is computed by

ΠC = Ct+N − Ct −

t+N−1∑

tn=t

∆C,tn(S(tn+1)− S(tn)) +

t+N−1∑

tn=t

anrtn
365

(∆C,tnS(tn)− C(tn))

−

t+N−1∑

tn=t

anqtn
365

∆C,tnS(tn), (13)

where Ct is the price of a call option at day t, ∆C,tn is the delta of the option at tn and

positive, rtn is the risk free rate at tn, qtn is the index dividend yield at tn, and an is the

number of calendar days between two consecutive trading days. For option contracts with

missing closing prices or deltas, we use those of the previous trading day. The gain or loss of

the call has 4 components, the gain from the change in the call option price, the cumulative

gain from the dynamic delta hedging, the interest earned on the risk free bond, and the

dividend paid out due to the short position in the underlying.

Note that the dollar gains (ΠC) represents the dollar return on a zero-cost portfolio. In

order to calculate the excess rate of return, we normalize the dollar gain by the value of the
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initial lending amount (∆C,tS(t)− C(t)),

rC =
ΠC

∆C,tS(t)− C(t)
. (14)

The denominator is equal to the proceeds received from shorting the stock less the premium

paid for the call option and always positive for at-the-money index options. This corresponds

to the initial value of the long position in this zero cost call portfolio and we use it to deflate

the dollar gain ΠC .

Similarly, the dollar gain for buying a delta-hedged put option is computed as follows,

ΠP = Pt+N − Pt −

t+N−1∑

tn=t

∆P,tn(S(tn+1)− S(tn)) +

t+N−1∑

tn=t

anrtn
365

(∆P,tnS(tn)− P (tn))

−

t+N−1∑

tn=t

anqtn
365

∆P,tnS(tn), (15)

where Pt is the price of a call option at day t, ∆P,tn is the delta of the option at tn. Put is

different from call in that ∆P,tn is negative while ∆C,tn is always positive. The delta-hedged

put excess return is computed as

rP =
ΠP

P (t)−∆P,tS(t)
. (16)

Delta-hedging a long put option requires longing the underlying and borrowing money to

finance both the put and underlying. ∆P,tn is always negative and the denominator is equal

to the put option premium plus the money needed to buy the underlying. This is the initial

value of the long position in this zero cost put portfolio and thus used to deflate the dollar

return ΠP .

In order to simultaneously examine both call and put option returns, we also compute

the valued weighted average of the delta-hedged call returns and delta-hedged put returns.

Both call and put returns are generated by zero cost portfolios. The weights are proportional

to the long position values of each portfolio and equal to

wC =
∆C,tS(t)− C(t)

∆C,tS(t)− C(t) + P (t)−∆P,tS(t)
,

wP =
P (t)−∆P,tS(t)

∆C,tS(t)− C(t) + P (t)−∆P,tS(t)
.

The value weighted call and put return corresponds to return of one call and one put option,
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both delta-hedged. Therefore, we define the straddle return as

rS = wCrC + wP rP

=
ΠC +ΠP

∆C,tS(t)− C(t) + P (t)−∆P,tS(t)
. (17)

For at-the-money options, the amount of borrowing/lending is about the same for call and

put options and this value weighted return is therefore approximately equal to the simple

arithmetic average of the delta-hedged returns of a call and a put. This strategy corresponds

to the conventional straddle because of the long position in a call and a put option.

We compute the risk neutral quadratic variation following the VIX calculation method.

The calculation is based on the replication strategy of a variance swap using European

options and futures contracts, as developed by Britten-Jones and Neuberger (2000), Jiang

and Tian (2005), and Carr and Wu (2009). For each maturity T , the risk neutral variance

EQ
t [RVt,T ] ≈

2

T − t

∫
∞

0

Θt(K, T )

Bt(T )K2
dK −

1

T − t
(
F

K0
− 1)2

where Bt(T ) is the price of a risk free bond that pays 1 dollar at T , Θt(K, T ) denotes the

value of an out-of-the-money S&P 500 (SPX) European option with strike K and maturity

T , F is the corresponding forward price, and K0 is the first strike below the forward level.

The integral is numerically computed with the trapezoidal method. The interest rate is

linearly interpolated from two neighboring continuously compounded zero-coupon rates on

the yield curve provided by OptionMetrics.6 After we obtain the risk neutral variance of

each option maturity, we compute the constant maturity risk-neutral variance by linearly

interpolating the two closet observations and derive the risk-neutral variance of 30- and 365-

day maturities. For robustness, we also calculate the risk neutral variance of the log price

difference following Bakshi, Kapadia, and Madan (2003),

EQ
t [(lnS(T )− lnS(t))2] =

2

T − t

∫
∞

0

1− ln[ K
S(t)

]

Bt(T )K2
Θt(K, T )dK

where Bt(T ) is the price of a risk free bond that pays 1 dollar at T , Θt(K, T ) denotes the

value of an out-of-the-money European option with strike K and maturity T . The numerical

integration and interpolations are implemented exactly the same as the first set of risk neutral

variance computations.

6The yield curve is from the LIBOR rates.
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5 Main Results

5.1 Delta-hedged returns across different maturity

We present our main results in this section. We begin with the returns of S&P500 index

delta-hedged options, and report the call, put and the value-weighted average results in panel

A, B and C of Table 2. Mean, median, min, and max monthly returns in the table are in

percentages. The full sample period is from January 1996 to December 2011, a total of 192

months.

Table 2 about here.

For short term 2-month options, we confirm the general findings in the literature and

document a large and negative returns for delta hedged calls, puts, and weighted average of

call and put options. For instance, the average delta hedged straddle return is -0.39% per

month (t=-4.19, using the 3 lags Newey-West standard error) and the mean returns of call

and put option are very similar. The returns are smaller in magnitude than those in Coval

and Shumway (2001) because they examine unhedged option returns and we present hedged

option returns. We also examine unhedged option returns and find that the average returns

of unhedged straddle is around -12% per month (unreported),7 which is quantitatively very

similar with the results in Coval and Shumway (2001).

When we extend the analysis to longer maturity options, there is a very strong pattern

that for the delta-hedged calls, puts, and naturally, the weighted average, returns become

monotonically less negative or even go positive with the maturity. We first examine call

option returns in Panel A. The 2-month call options mean return is −0.34% per month (t=-

3.34, using the 3 lags Newey-West standard error). The next maturity, 4-6 month group,

call options return is -0.15% (t=-1.38), about half the size of that of the 2-month contract,

and insignificantly different from 0 at all conventional levels. The average returns of the 7-9

month and 10-12 month options become even smaller in size and are both insignificant. For

the longest maturity options, the mean return goes up to -0.07% (t=-0.49), or a mere -7

basis points, per month. Moreover, out of the 5 maturity groups, only the shortest maturity

call option returns is statistically significant.

7The unhedged option return results are available upon request.
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Put options show a very similar pattern. The 2-month put option returns -0.45% (t=-

4.99) on average. As option maturity increases, the average return becomes less negative

and smaller in magnitude, just as what we document for call options. Interestingly, the

mean return of the longest maturity puts goes up to a stunning positive 0.03% (t=0.22).

The weighted averages are constructed using one call and one put and the straddle returns

resemble those observed in call and put options. The 2-month straddle average return is

-0.39% (t=-4.19), and 4-6 month option straddle average return is -0.20%, about half the

size of that of the 2-month contract, and also only significant at 10% level (t=-1.93). Again

the other maturity straddle returns become smaller in magnitude and less significant. Over-

all, among the 15 option groups across all maturities, only 5 groups display a significantly

negative mean return. The mean returns are indistinguishable from 0 for the vast majority.

These evidence suggests the diminishing negative risk premium with time to maturity. It

is also worth noting that the skewness is all positive because the losses from long option

positions are always limited.

We observe a similar pattern in other three indices. In Table 3, for the interest of space,

only the delta-hedged straddle returns are summarized in panel A, B, and C for NASDAQ,

Dow Jones, and S&P 100 index.

Table 3 about here.

We note the less negative straddle returns with maturity for the NASDAQ and Dow

Jones index. The S&P 100 index is a little different. It only has a very small sample for

7-9 months (75 months) and 10-12 months (26 months) due to the limited availability of

long term contracts at the beginning of the sample period. As a result of the short sample

period, the average return for 10-12 months happens to be very significantly negative (-

0.42, t=-2.65). With this exception only, shorter maturity returns are more negative and

statistically more significant for all the three indices. Among the 15 option groups of three

indices across all maturities, less than half display a significantly negative mean return and

majority of the mean returns is indistinguishable from 0. Another consistent finding is the

positive skewness, although the magnitude varies with the index. Again, this is because

options provide downside protections.

5.2 Variance risk factors

The delta hedged option returns is directly related to the variance risk premium (Bakshi and

Kapadia (2003)). The negative returns of short term options is well documented as evidence
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of a large negative variance risk premium. From an asset pricing perspective, the expected

return of a portfolio depends on the portfolio’s factor loading with respect to the risk factor.

Following the procedures outlined in the methodology part, we compute the 30-day risk

neutral variance of the SPX options and use it as the risk factor. The risk neutral variance is

very similar with the highly followed VIX index. This is the short-term risk neutral variance

and we name it level as in the literature on the term structure of interest rate. Table 4 Panel

A presents the summary statistics of the level factor as well as the classical Fama-French

monthly factors from 1996 to 2011. The average level is 0.051 and it reaches 0.341 during

the financial crisis in 2008. Panel B displays its Spearman correlation with other factors.

The level has a strong and negative correlation with the market, confirming to the general

finding in the literature. It also shows negative but insignificant correlations with the hml

and smb factors.

Table 4 about here.

This level factor alone, however, has a hard time explaining why the expected returns of

longer term options are close to 0. In a multi-factor asset pricing model, the expected excess

return of an asset is equal to the product of its factor beta and the market price of risk of the

factor. In a one-factor model of the variance risk, the variance risk premium being negative

implies that the variance betas of longer term options should be close to 0 or very small.

This is at heart of the problem.

Table 5 about here.

Long-term option prices are more sensitive to the underlying volatility. As we have shown

in Table 1, the vegas (the first derivative of option price with respect to volatility) of options

are approximately increasing at a rate equal to the square root of maturity. We mainly

focus on delta-hedged option returns. The impact of the vega is attenuated by the gains

(losses) from delta hedging and borrowing (lending) and the variance beta of options are not

exactly increasing at the speed of square root of expiration time. Because the level factor is

very persistent, we use the change in level as the risk factor and estimate the variance beta

of each option portfolio by regressing monthly portfolio returns on the change of the level

factor in a time-series regression. The level betas are shown in Table 5. For SPX options, the

variance beta of the shortest maturity straddle is 0.255 and it goes up to 0.318 for the longest

maturity option. Options on other indices show a similar pattern. Overall, the variance beta
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are mildly increasing, or at least non-decreasing, with maturity. In Figure 1, we plot mean

returns of each portfolio that has more than 128 monthly observations (two thirds of the

sample) against their estimated variance betas. For most portfolios, their variance level

betas are concentrated in a narrow band while the expected returns are very different. If one

were forced to draw a fitted line, the line would be upward sloping. This implies a positive

variance risk premium, highlighting the inability of the short term variance (level) factor to

explain longer term option returns.

Figure 1 about here.

To better understand the cross-section of option returns, we exploit the term structure

of the risk neutral variances in the options market. This is motivated by several recent

papers that show the importance of the long term volatility in option and variance swap

pricing (Christoffersen, Jacobs, Ornthanalai, and Wang (2008) and Egloff, Leippold, and

Wu (2010)). We compute the 365-day risk neutral variance, compute the difference between

the 365- and 30-day (level) risk neutral variance, and name it slope as in the term structure

of interest rate literature. The properties of the slope factor is presented in Table 4. The

slope factor has a mean of 0 and median value of 0.004. More than half the time, the term

structure of the risk neutral variances is upward sloping. It has a significant correlation of

-0.324 with the level factor. This is to be expected because of the construction of the slope

factor. It is also positively correlated with the market and smb factor. With the addition of

the slope factor, we will investigate the asset pricing implications of the two factors.

5.3 Asset pricing tests

In this section we systematically examine whether the variance factors extracted from risk

neutral variance can sufficiently explain index option returns across different maturities.

We consider the stochastic discount factor (SDF) because it provides us with a unifying

framework for all possible systematic risk factors and it also directly asses the economic

significance of each factor. Following the literature (Cochrane (2005)), the discount factor,

mt, can be written as a linear function of factors:

mt =
[
1− (ft − µ)⊤b

]
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where ft is a K×1 vector of risk factors, µ = E(ft), and b is a K×1 vector of coefficients.

In our baseline model, there are two variance factors, the changes in level and slope of risk-

neutral variances, f = (∆l,∆s)′. Then we use the GMM to test the Euler equation and

check the goodness of fit of the model. The moment conditions become

E

[

ft − µ

rt − rt
[
(ft − µ)⊤b

]

]

= 0

We conduct two-step GMM and obtain almost identical results if we do iterative GMM.

Following Yogo (2006) and Jagannathan and Wang (2009), our optimal weighting matrix is

W =

[

kI 0

0 Σ−1
f

]

where k is a constant and Σf is the variance of the factors.

Ideally, we would use all the 20 delta-hedged straddle returns as test assets. But the

sample period of some option portfolios are very short due to data availability issue, as shown

in Table 3. We thus focus on those returns with sufficient observations, and specifically, those

with at least above two thirds of the sample period.8

The two-step GMM is equivalent to a two-pass procedure which involves a set of time-

series regressions in the first pass and a cross-sectional regression in the second pass. We

first conduct the time series regression of each portfolio’s excess return on the vector of risk

factors.

Re
it = ai + f⊤t βi + εit, t = 1, ..., T, for each i = 1, ..., n

Here βi represents the ith row in β. Then we conduct the cross-sectional regression of average

portfolio returns on the estimated betas. Since our test asset is already the excess return,

we do not add an intercept in the cross sectional regression.

R̄e
t = β̂⊤

i λ+αi, i = 1, ..., n

where R̄e
t = 1

T

∑T

t=1R
e
it, β̂i is the OLS estimate of βi obtained in the first stage, and αi is

the pricing error α̂ = R̄e − β̂⊤λ̂ .

It is known that the Euler equation implies the following relationship

8This criteria excludes NDX 10-12 and 13+ months, and OEX 7-9, 10-12, and 13+ months. We have
tried different number of assets and repeat the GMM tests, the results are qualitatively very similar.
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E(Re
t ) = Cov

(
Re

t , f
⊤

t

)
b =Cov

(
Re

t , f
⊤

t

)
V ar (ft)

−1

︸ ︷︷ ︸

β

V ar (ft)b
︸ ︷︷ ︸

λ

where β is a N ×K matrix of factor betas, and λ is a K × 1 vector of factor risk premia.

We measure the goodness of fit of the model by mean absolute pricing error (MAE) and

root mean squared pricing error (RMSE) and

R2 = 1−
(R̄e − β̂⊤λ̂)

⊤

(R̄e − β̂⊤λ̂)

(R̄e − R̈)⊤(R̄e − R̈e)

R̈e =
∑n

i=1
R̄e/n

In Table 6, panel A reports the GMM test results while panel B reports the two-pass

Fama-MacBeth regressions results. In panel A, we report the estimates of bs, and implied

factor risk premium λ, accompanied with the t-test through the Newey-West standard errors

of 3 month lags.

Table 6 about here.

In the first two columns of panel A, we start from one-factor model, where the only factor

is either the level or the slope. Our goal is first to examine whether the traditional one-factor

structure is sufficient to account for the increasing option returns with maturity. Clearly,

these two models do not perform well, as the J-stat for the level model is significant at 6%

while that for the slope model is only marginally above 10%. Therefore we have to reject

the level model and barely let the slope model pass. Besides, the estimates of coefficient b

in each model are -7.21 and 15.93, both not significantly different from zero.

These results, especially that of the level factor model, may seem inconsistent from the

literature. The reason is the test assets are the delta-hedged returns not only generated from

short maturity, but span different maturity and can cover as long as more than 650 days.

In contrast, when we turn to our baseline two-factor model, the estimates of two coefficients

are both significantly positive, 26.51 and 69.57. The model is not rejected also, with a J-stat

of 13.40 (p=0.27). The option returns are delta hedged and should be uncorrelated with

market movement, at least locally. But the market return is correlated with both the level

and slope factors. Therefore, we also augment the market excess return and expand the SDF
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as consisting three factors, which further improves the model performance. Compared to

the two-factor model, the estimate of blevel changes to 71.61, while that of bslope remains very

similar. The estimate of coefficient to market excess return is 43.88, also significant at 1%.

Panel B reports the two-pass procedure results. As well known the OLS standard error

is not reliable due to the error-in-variable problem when the second pass βs are estimated,

so we only report the t-test by standard errors with Shanken correction (Shanken (1992)).

When we examine the statistical significance of risk factor premium λs again, we find that the

Shanken correction generates numerically different test statistics from those in panel A but

none material effects. The bad performance of the single-factor models are again reflected

by the almost zero R2. It is -0.18 for level model and 0.16 for slope model. The differences in

these two R2s indicate that level model does not explain any of the cross sectional differences

in the monotonically increasing options with maturity, while slope model can, but not to

a sufficient degree. These two models also generate large pricing errors, monthly MAE of

0.12% and 0.10%, and monthly RMSE of 0.15% and 0.12% separately. The slope factor still

is more important than level factor.

Figure 2 about here.

Again, two-factor model entails a much better explanatory power, improving R2 substan-

tially to 0.67, and also reducing the monthly MAE to 0.06% and RMSE to 0.08% by about

a half from one factor models. The greatly improved performance can be attributable to

the complementary roles played by each separate factor in the model. Finally, inclusion of

market excess return further bring explanatory power up, as R2 grows to 84%, and reduces

MAE and RMSE considerably to 0.04% and 0.05% monthly. The goodness of fit of each

model is also illustrated in Figure 2. Panel A and B plot the average return of each test

portfolio against its fitted return in the two one-factor models. In both panels, there is not

nearly enough spread in the fitted returns and this highlights the problem of the one-factor

models. Panel C plots the mean returns against fitted returns in the two-factor model. Most

of the portfolios line up very closely to the 45 degree line and shows a good fit. Finally,

Panel D plots that pattern in the model, in which the two variance factors are augmented

by the market excess return. It shows a further improvement on the graph in Panel C.

Then we turn back to the asset return factor loadings βs in the first pass regression. For

asset returns to display a spread, there must be non zero betas across assets along with the

non zero factor risk premium. We document a very general pattern such that the βs grow with
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the maturity, for both the level and slope. For example, on average, the level βs change from

0.3 for short-maturity straddle returns to more than 0.6 for longest-maturity straddle returns.

The slope βs change from 0.04 for short-maturity straddle returns to average 0.6 for longest-

maturity straddle returns. It is noteworthy that for the short-maturity, level β is much

larger than slope β. Moreover, short-maturity level βs is the only group with statistically

insignificant estimates (we again use 3 lags Newey-West standard errors to conduct t-test).

Given the magnitudes of two factor risk premiums, the dominance of the former β determines

the negative variance risk premium of short-maturity options. In contrast, close size of both

βs for longer maturity returns indicates that their return will be much less negative with the

maturity.

Table 7 about here.

5.4 Classical risk factors

We further investigate the explanatory power of classical risk factors, like the Fama-French

factors, momentum, and market wide liquidity (Pástor and Stambaugh (2003)) to the option

returns. We run time series regression of each portfolio’s excess return on any set of the above

factors:

Re
it = αi + f⊤t βi + εit, t = 1, ..., T, for each i = 1, ..., n

Here βi represents the ith row in β. The conventional factor models are CAPM, Fama-

French three factor, and Fama-French three factor augmented with liquidity model. In order

to conduct time series bases tests, we choose the traded liquidity factor from Pástor and

Stambaugh (2003) as a measure of the market wide liquidity. And our two variance risk

factors are not excess returns, therefore we construct factor mimicking portfolios and use

the factor mimicking portfolio returns as proxies for the variance factors in the time-series

regression tests.

For each set of factors as the explanatory variables, we have a specific regression intercept

α. Given the multiple asset returns we test at the same time, we conduct a test of the

significance whether all these αs are jointly different from zero. This is achieved through

the GRS test in the finite sample, and for robustness, we also conduct the large-sample χ2

tests, assuming i.i.d. residuals then alternatively the HAC residuals with 3 mont lags. (For

a textbook treatment, see Cochrane (2005).)
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The time series test results are presented in Table 8. We first examine the classical Fama-

French 3 factors that are very successful in explaining the cross section of stock returns. Both

the finite sample GRS test and two versions of large sample χ2 tests strongly reject the Fama-

French 3-factor model. All p-values are 0. Pricing errors are relatively big. The RMSE is

about 0.2% per month or 2.4% per year and the R2 is less than 20%. This confirms the

general finding in Carr and Wu (2009). Then we augment the 3-factor model using the

momentum factor and the market wide liquidity factor respectively. The momentum and

liquidity factors barely improve the model performance. In both cases, we still find strong

rejections from the GRS test and both versions of the χ2 tests. And the pricing errors are

also similar with the Fama-French 3-factor model.

Our two variance factors explain the option straddle returns much better. The GRS test

still rejects the null. But both large sample χ2 tests fail to reject the model at all conventional

levels. The p-values are 0.26 and 0.46 respectively. The pricing error shrinks from 20 basis

points (bps) to less than 4 bps per month. And the R2 jumps to 91.5%. Finally, we augment

the two variance factors by the market excess return. The results are quantitatively very

similar with the two variance factor model. Overall, the the time series results corroborate

our main finding in the GMM and Fama-MacBeth tests.

Table 8 about here.

5.5 Predictive regressions

The slope factor commands a significant risk premium. Following the ICAPM intuition, it

implies that the slope factor should positively forecast future investment opportunities. We

investigate whether the slope factor forecasts macroeconomic conditions. More specifically,

we examine the aggregate output and test whether the slope factor predicts the growth rate

of the seasonally adjusted industrial production.

Table 9 presents the time series regression results of the growth rate of industrial pro-

duction on lagged slope factor. Because of the serial correlation in the industrial production

growth rate, we control for lagged growth rate to isolate the information in the term struc-

ture of variances and all standard errors are Newey-West adjusted with 6 lags. The slope

factor strongly forecasts the industrial production growth of the next 3 months. The point

estimates 0.048 (t = 1.99), 0.080 (t = 2.11), and 0.074 (t = 2.29) and all are statistically
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significant at 5% level. The coefficient is highest for the 2nd month at 0.080. A one stan-

dard deviation shock to the slope factor indicates a 0.19%9 increase in the output growth

rate 2 month later. In order to gauge the economic significance of the predictive power, we

compare it with the average output growth rate. During the sample period, the average

output growth rate is 1.8% per year or 0.15% per month. The slope predicts the aggregate

output growth and therefore innovations of the slope factor should be priced by the ICAPM

intuition. This explains the positive risk premium of the slope factor. The results also relate

to the finding that the long term variance forecasts macroeconomic variables as in Adrian

and Rosenberg (2008).

Table 9 about here.

5.6 Calendar spread returns

To better understand the importance of the slope factor, In this section we examine the

return characteristics of the calendar spread strategy, to long the longer-maturity options

(4-6, 7-9, 10-12, and >12 months) and short the short-maturity options (2 months). We

examine this strategy with both calls and puts, and again to save the space, we only report

the straddle results. The mean return, the t-statistics with Newey-West standard errors, and

the Sharpe ratio in panel A of Table 10.

Table 10 about here.

Given the pattern from delta-hedged straddle returns in section 5.1, it is perhaps no

surprise that most of these returns are all positively significant (except calendar spread

longing the 10-12 months S&P 100 index, which has only 26 months period). And there is

an increasing trend of the mean returns with the maturity generally.

The calendar spread is very profitable – the Sharpe ratios are usually about 0.3 at a

monthly basis, translating to as high as between 1.1 and 1.2 annually. Again this is true for

all the portfolios except S&P 100 index 10-12 months calendar spread. Although there is

a reservation whether Sharpe ratio is a very telling statistics on option returns as in stock

returns, it reveals important information in terms of how we should restrict the pricing

9The standard deviation of the slope is 0.024 as shown in Table 4.
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kernel as in Cochrane and Saa-Requejo (2000). We also consider that perhaps one way to

lift such reservation is that, also inheriting from the delta-hedged return results, the calendar

spread returns are not subject to crash events in sample and display a positive skewness.

Moreover, the margin requirement of writing naked options is prohibitively high for investors

(Santa-Clara and Saretto (2009)). The calendar spread strategy essentially eliminates the

high margin because of the offsetting long and short option positions.

We further investigate whether the slope premium is constant by expectation hypothesis

type predictive regressions. In panel B, we examine the time series regression results of the

calendar spread on lagged level and slope of the risk neutral variance.

csj,t+1 = c0 + cslopest + clevellt + εt+1

where csj,t+1, the calendar spread return, is defined as rj,t+1 − r2,t+1, and rj,t+1 denotes the

returns of the j-month index option straddle return. This specification is motivated by those

studies on the expectation hypothesis in the term structure of interest rate literature. The

calendar spread return has a very high

The results in Panel B of Table 10 shows strong rejection of the null of no predictability.

The point estimates of the slope are statistically significant for all 20 portfolios at 10% level.

19 out of the 20 estimates are significant at 5% level. The average adjusted R2 is above

10% for monthly non-overlapping regressions. The results complements the findings in the

existing literature on the level premium. Carr and Wu (2009) conducts a similar regression

and rejects that null that the risk premium of the level is constant.

Table 10 about here.

5.7 Robustness

Recent studies (Christoffersen, Goyenko, Jacobs, and Karoui (2011) and Muravyev (2011))

both find liquidity is priced in the cross-section of option returns. While we have shown

that the aggregate market liquidity as a systematic risk factor does not explain the expected

option returns, it is possible that long maturity options earn higher returns because of they

are more illiquid. We examine a host of common liquidity measures for options across all

maturities, including the relative bid-ask spread, dollar trading volume, and open interest.

The results are shown in Table 11.
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Table 11 about here.

Contrary to conjecture that long-maturity options are illiquid, the relative bid-ask spread

(half of the difference between the bid and ask divided by the average of bid and ask) is

actually decreasing with option maturity. For the SPX options, the bid-ask spread is about

13% of the option price for the 2-month maturity contracts and the spread drops to 5% for

the longest maturity contracts. The relative spread as a fraction of the option premium is

actually lower for long dated options. This pattern is consistent across all 4 indices and

confirms the finding in Christoffersen, Goyenko, Jacobs, and Karoui (2011). The dollar

volume is generally decreasing with option maturity. The pattern for the open interest is

mixed. For the SPX options, the open interest actually first increases with maturity for the

first 3 maturity groups before it decreases. In summary, the shortest maturity contract are

the most expensive to trade because of the highest bid-ask spread and are as actively traded

as the next 2 maturities. Overall, there is no consistent evidence that option liquidity is

monotonically decreasing with maturity.

Table 12 about here.

We finally examine the robustness of the main results in two subsample periods. Table 12

presents the mean returns of all delta-hedged option straddle returns of the two halves. Panel

A presents the first half of the sample which runs from 1996 to 2003 and includes the dot-com

bubble period. The options returns show a similar pattern in that mean returns are generally

increasing with maturity and the long maturity options in general have insignificant returns.

The only exception is the longest maturity OEX option which has only 11 observations in

the sample period. In fact, there are 3 other groups in the first half of the sample that does

not have any qualifying observations and therefore are left blank in this panel. Panel B

shows the second half which covers from 2004 to 2011and thus the financial crisis. We find

the same upward sloping term structure of expected option returns. Long maturity options

earn close to 0 returns and mean returns of the longest maturity option of both the SPX

and DJX are even positive.

6 Conclusion

In this paper, we study the variance risk premium in a classical asset pricing framework.

Comparing with the large and negative risk premium in short-maturity options, we find
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that long maturity options have both higher exposure to the variance risk and less negative

risk premium. For the S&P 500 index, both call and put options of longer than 6-month

maturity have variance risk premium indistinguishable from 0. The results suggest that it

is essentially free to insure against the variance risk using long maturity option contracts

and cast doubts on the one-factor variance risk model. Indeed, we examine index options

on all major stock market indexes and find no relationship between the options’ variance

betas and their expected returns. In another word, there is no risk return relationship for

the commonly used variance risk factor. A one-factor model is strongly rejected under a

stochastic discount factor framework.

The mismatch stems from the one-factor assumption of the variance risk and more factors

are needed just as term structure of interest rates models. In addition to the variance level

factor, a second slope factor in the term structure of the risk neutral variances is necessary

to explain the expected returns of index options. The variance level factor commands a large

and negative risk premium, as documented in the extant literature. The slope factor, on the

other hand, commands a positive risk premium. Short-maturity options only load on the

variance level factor and earn large and negative risk premium. Long-maturity options have

large exposure to both the level and slope factors and the risk premia of the two sources by

and large cancel out. This is why long maturity options have high variance beta and earn

low risk premium.

The slope factor is predicting future economic activities and therefore provides a forward

looking measure of the macroeconomic conditions. Such a variable ought to command a

positive risk premium according to the ICAPM model. Moreover, we find that the risk

premium of the slope factor is also time varying. The properties of the slope factor provide

economic interpretations of the risk neutral variances and provide the economic underpinning

of the risk premium in long maturity options.
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Table 1: Summary Statistics

This table presents the average number of calendar days to maturity, moneyness, absolute deviation, delta,
and vega of the option straddles on the 4 major indexes. For each index, we present the average characteristics
of each maturity group. Moneyness is defined as the spot price S divided by the option strike price K.
Absolute moneyness deviation is defined as | S

K
−1|. Delta, Gamma, and Vega are the corresponding straddle

greeks of the Black-Scholes model. Panels A through D present the results of the S&P500, NASDAQ
Composite, Dow Jones Industrial Average, and S&P 100 respectively. The sample period is 1996 to 2011.

Panel A: S&P 500 Index

Maturity (months) 2 4− 6 7− 9 10− 12 > 12
Number of Days to Maturity 50.09 141.83 233.87 324.71 656.84

Moneyness 1.00 1.00 1.00 1.00 1.00
Absolute Moneyness Deviation 0.00 0.00 0.01 0.01 0.01

Delta 0.06 0.10 0.13 0.15 0.21
Gamma (× 100) 1.10 0.62 0.46 0.38 0.26

Theta -248.04 -149.17 -114.77 -96.61 -67.03
Vega 326.90 549.04 701.39 819.06 1115.21

Panel B: NASDAQ Composite Index

Maturity (months) 2 4− 6 7− 9 10− 12 > 12
Number of Days to Maturity 49.92 141.27 231.98 323.45 679.99

Moneyness 1.00 1.00 1.00 1.00 1.00
Absolute Moneyness Deviation 0.00 0.01 0.01 0.00 0.01

Delta 0.07 0.12 0.13 0.12 0.24
Gamma (× 100) 0.58 0.33 0.25 0.17 0.13

Theta -574.95 -329.98 -239.55 -199.05 -124.58
Vega 483.55 802.75 1001.41 1356.87 1772.35

Panel C: Dow Jones Industrial Average Index

Maturity (months) 2 4− 6 7− 9 10− 12 > 12
Number of Days to Maturity 49.94 141.02 232.33 323.39 661.18

Moneyness 1.00 1.00 1.00 1.00 1.00
Absolute Moneyness Deviation 0.00 0.01 0.01 0.01 0.01

Delta 0.04 0.08 0.10 0.12 0.18
Gamma (× 100) 11.79 6.51 4.83 3.98 2.65

Theta -22.14 -13.38 -10.34 -8.68 -5.93
Vega 29.86 50.05 63.93 74.77 101.84

Panel D: S&P 100 Index

Maturity (months) 2 4− 6 7− 9 10− 12 > 12
Number of Days to Maturity 49.92 135.03 215.52 320.73 866.65

Moneyness 1.00 1.00 1.00 1.00 1.00
Absolute Moneyness Deviation 0.00 0.01 0.01 0.01 0.01

Delta 0.06 0.08 0.09 0.10 0.17
Gamma (× 100) 2.06 1.19 0.96 0.88 0.49

Theta -131.92 -83.01 -61.98 -44.38 -28.76
Vega 171.89 279.64 341.19 404.28 625.17
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Table 2: S&P 500 Index Option Returns

This table presents the properties of delta-hedged option returns of different maturities. Mean, min, median,
and max returns are monthly returns in percentage. Monthly Sharpe ratios are also computed. Panels A,
B, and C present the results of call, put, and straddle options respectively. The sample period is 1996 to
2011. The t-stats in the parentheses are computed using Newey and West adjusted standard errors with 3
lags (6).

Panel A: Call Options

Maturity (months) 2 4− 6 7− 9 10− 12 > 12
Mean -0.337 -0.148 -0.092 -0.082 -0.067

(-3.34) (-1.38) (-0.85) (-0.73) (-0.49)
Min -4.596 -4.164 -4.025 -3.907 -5.302

Median -0.382 -0.233 -0.127 -0.086 -0.034
Max 7.552 6.890 6.977 7.649 9.294

Skewness 1.255 1.498 1.190 1.073 0.883
Kurtosis 11.249 9.275 8.162 7.603 8.080

SR -0.268 -0.113 -0.067 -0.057 -0.038
Obs 192 192 191 192 192

Panel B: Put Options

Maturity (months) 2 4− 6 7− 9 10− 12 > 12
Mean -0.447 -0.253 -0.160 -0.106 0.028

(-4.99) (-2.59) (-1.47) (-0.95) (0.22)
Min -3.829 -3.380 -2.985 -3.105 -4.165

Median -0.561 -0.312 -0.186 -0.159 -0.090
Max 5.333 6.385 6.944 7.709 10.066

Skewness 1.125 1.319 1.461 1.305 1.272
Kurtosis 6.644 7.981 8.834 8.526 8.612

SR -0.388 -0.208 -0.121 -0.078 0.017
Obs 192 192 191 192 192

Panel C: Straddle Returns

Maturity (months) 2 4− 6 7− 9 10− 12 > 12
Mean -0.389 -0.195 -0.119 -0.086 -0.003

(-4.19) (-1.93) (-1.12) (-0.79) (-0.02)
Min -4.077 -3.730 -3.322 -3.088 -3.723

Median -0.480 -0.280 -0.158 -0.102 -0.056
Max 6.400 6.189 6.959 7.682 9.730

Skewness 1.346 1.462 1.463 1.346 1.386
Kurtosis 9.108 8.526 9.124 8.809 9.493

SR -0.337 -0.159 -0.091 -0.064 -0.002
Obs 192 192 191 192 192
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Table 3: Returns of Options on Major Indices

This table presents the returns of delta-hedged option straddles on major indices (weighted average of call
and put options). Mean, min, median, and max returns are monthly returns in percentage. Monthly Sharpe
ratios are also computed. Panels A, B, and C present the results of the NASDAQ Composite (NDX), Dow
Jones Industrial Average (DJX), and S&P 100 (OEX) respectively. The sample period is 1996 to 2011. The
t-stats in the parentheses are computed using Newey and West adjusted standard errors with 3 lags.

Panel A: NASDAQ Composite Index

Maturity (months) 2 4− 6 7− 9 10− 12 > 12
Mean -0.284 -0.042 -0.037 -0.015 -0.062

(-2.44) (-0.33) (-0.27) (-0.06) (-0.29)
Min -4.537 -4.092 -5.333 -3.314 -4.281

Median -0.381 -0.313 -0.205 -0.224 -0.231
Max 4.999 6.268 6.431 6.509 7.068

Skewness 0.423 0.781 0.676 0.866 0.937
Kurtosis 4.383 4.749 4.938 4.598 5.037

SR -0.199 -0.027 -0.023 -0.008 -0.034
Obs 192 190 175 57 85

Panel B: Dow Jones Industrial Average Index

Maturity (months) 2 4− 6 7− 9 10− 12 > 12
Mean -0.485 -0.280 -0.214 -0.167 -0.086

(-4.51) (-2.27) (-1.75) (-1.34) (-0.63)
Min -4.682 -4.650 -4.181 -4.098 -3.847

Median -0.535 -0.330 -0.253 -0.230 -0.156
Max 5.919 7.994 7.924 8.647 9.833

Skewness 1.102 1.914 1.527 1.609 1.425
Kurtosis 8.403 12.562 10.170 11.108 10.605

SR -0.402 -0.204 -0.153 -0.116 -0.054
Obs 170 170 170 170 170

Panel C: S&P 100 Index

Maturity (months) 2 4− 6 7− 9 10− 12 > 12
Mean -0.403 -0.223 -0.249 -0.419 -0.120

(-4.45) (-2.11) (-1.97) (-2.65) (-0.59)
Min -4.228 -4.134 -3.627 -1.772 -4.605

Median -0.504 -0.414 -0.322 -0.347 -0.288
Max 5.679 7.454 5.452 1.996 11.524

Skewness 1.122 1.650 1.097 0.453 2.322
Kurtosis 7.537 10.384 7.904 3.376 15.744

SR -0.354 -0.172 -0.199 -0.473 -0.064
Obs 192 191 75 26 106
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Table 4: Variance Factors

This table presents properties of our level and slope factors. Pane A shows the summary statistics of the
level and slope factors, as well as the monthly Fama-French factors. Panel B presents the pairwise Spearman
correlations among factors. Corresponding p-values are in the parentheses.

Panel A: Summary Statistics

Mean Std Median Min Max
level 0.051 0.045 0.041 0.009 0.341
slope 0.000 0.024 0.004 -0.159 0.046
mkt 0.004 0.049 0.010 -0.185 0.115
smb 0.003 0.038 0.000 -0.166 0.221
hml 0.003 0.036 0.002 -0.129 0.139

Panel B: Correlations

level slope mkt smb hml

level -0.324 -0.233 -0.080 -0.091
(0.00) (0.00) (0.27) (0.21)

slope 0.257 0.147 -0.007
(0.00) (0.04) (0.92)

mkt 0.304 -0.227
(0.00) (0.00)

smb -0.149
(0.04)
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Table 5: Portfolio Variance Betas

This table reports factor loadings of the 20 delta-hedged index option straddles with respect to the level
factor in the Fama-MacBeth regressions. The t-stats in the parentheses are computed using Newey and West
adjusted standard errors with 3 lags.

Maturity (months) SPX DJX NDX OEX
2 0.255 0.250 0.241 0.255

(8.81) (9.30) (9.96) (10.56)
4− 6 0.286 0.317 0.296 0.312

(9.47) (7.64) (12.44) (10.12)
7− 9 0.294 0.304 0.295 0.303

(8.26) (8.37) (8.81) (7.34)
10− 12 0.293 0.301 0.278 -0.235

(7.55) (7.27) (6.75) (-2.01)
> 12 0.318 0.297 0.304 0.372

(7.08) (5.92) (6.29) (5.80)
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Table 6: Asset Pricing Tests

This table presents results of GMM and Fama-MacBeth (FMB) procedures using 20 delta-hedged index
option straddles as test assets (weighted average of call and put options). Market prices of the level and
slope factors are presented. We also present the adjusted R2, J-stats of the GMM tests, the square root of
mean squared errors (RMSE) and the mean absolute pricing errors (MAE). The RMSE and MAE are
expressed in monthly percentages. Panels A reports the GMM results. The t-stats in the parentheses are
computed using Newey and West adjusted standard errors with 3 lags. P -values associated with the J-stats
are in square brackets. Panel B reports the Fama-MacBeth results. The second stage of the FMB does not
include a constant. The t-stats are adjusted with the Shanken’s correction.

Panel A: GMM Tests

blevel -7.206 26.509 71.613
(-1.19) (1.95) (2.62)

λlevel -0.006 -0.015 -0.017
(-1.81) (-3.95) (-4.83)

bslope 15.934 69.566 69.179
(1.17) (3.03) (2.28)

λslope 0.007 0.017 0.015
(1.85) (4.88) (4.25)

bmkt 43.883
(3.72)

λmkt 0.073
(3.72)

J-stat 21.956 19.589 13.400 6.553
[0.06] [0.11] [0.27] [0.68]

R2 -0.178 0.157 0.671 0.844

MAE 0.118 0.099 0.058 0.041
RMSE 0.145 0.123 0.077 0.053

Panel B: Fama-MacBeth Regressions

λlevel -0.006 -0.015 -0.017
(-2.08) (-3.93) (-3.23)

λslope 0.007 0.017 0.015
(2.22) (4.61) (2.71)

λmkt 0.073
(2.52)

R2 -0.178 0.157 0.671 0.844

MAE 0.118 0.099 0.058 0.041
RMSE 0.145 0.123 0.077 0.053
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Table 7: Portfolio Betas

This table reports factor loadings of the 20 delta-hedged index option straddles in the Fama-MacBeth
regressions. Panel A reports the β loadings with respect to the level factor. Panel B reports the β loadings
with respect to the slope factor. The t-stats in the parentheses are computed using Newey and West adjusted
standard errors with 3 lags.

Panel A: Level βs

Maturity (months) SPX DJX NDX OEX
2 0.282 0.272 0.320 0.304

(6.23) (8.26) (5.78) (8.86)
4− 6 0.470 0.497 0.475 0.500

(10.24) (7.88) (6.50) (8.94)
7− 9 0.520 0.547 0.667 0.336

(8.76) (8.52) (9.20) (6.18)
10− 12 0.559 0.571 0.694 0.591

(7.72) (6.58) (12.05) (2.51)
> 12 0.689 0.708 0.826 1.004

(6.46) (7.58) (10.11) (10.33)

Panel B: Slope βs

Maturity (months) SPX DJX NDX OEX
2 0.043 0.035 0.126 0.078

(0.58) (0.54) (1.58) (1.30)
4− 6 0.293 0.290 0.286 0.302

(3.92) (3.52) (2.61) (3.68)
7− 9 0.361 0.392 0.602 0.055

(3.71) (4.15) (5.30) (0.73)
10− 12 0.427 0.435 0.736 1.063

(3.87) (3.60) (7.57) (5.16)
> 12 0.593 0.664 0.926 1.117

(3.65) (5.23) (6.74) (8.16)

33



Table 8: Time Series Tests

This table presents time series tests of the variance risk factors as well as alternative models. The liquidity
factor is the traded liquidity factor from Pástor and Stambaugh (2003). Our variance factors are factor
mimicking portfolios of the level and slope factors. We present the GRS test, the large-sample χ2 tests,
assuming both i.i.d. residuals (χ2

1) and HAC residuals (χ2

2). Associated p-values are in the parentheses. We

also compute the MAE, RMSE and R̂2 to demonstrate the goodness of fit. Both the MAE and RMSE

are in percentage per month.

GRS χ2

1 χ2

2 MAE RMSE R̂2

Fama-French 3-Factor Model 17.803 57.706 42.439 0.162 0.204 0.192
(0.00) (0.00) (0.00)

Carhart 4-Factor Model 7.787 33.670 59.274 0.245 0.271 0.191
(0.00) (0.00) (0.00)

Fama-French 3-Factor + Liquidity Model 12.850 55.558 44.953 0.140 0.180 0.227
(0.00) (0.00) (0.00)

Variance Risk 2-Factor Model 8.365 18.068 14.821 0.031 0.039 0.915
(0.00) (0.26) (0.46)

Variance Risk 2-Factor + Market Model 5.696 18.459 16.598 0.032 0.039 0.915
(0.00) (0.24) (0.34)
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Table 9: Predicting Industrial Production Growth

This table reports the predictive regression of the monthly growth rate of seasonally adjusted industrial
production on the slope factor. The sample period is from 1996 to 2011. The Newey-West adjusted t-
statistics are in the parentheses.

con 0.002 0.001 0.001 0.001 0.001 0.001
(1.81) (1.55) (1.79) (1.68) (1.78) (1.40)

∆IPt 0.242
(2.26)

slopet 0.057 0.048
(1.97) (1.99)

∆IPt−1 0.310
(5.14)

slopet−1 0.091 0.080
(2.04) (2.11)

∆IPt−2 0.348
(3.93)

slopet−2 0.087 0.074
(2.73) (3.29)

R2 0.032 0.084 0.090 0.182 0.080 0.197
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Table 10: Returns of Calendar Spread

This table reports the properties of calendar spread returns. The calendar spread is defined as longing the
long maturity delta-hedged option portfolio and shorting the 2-month delta-hedged option portfolio. The
time-to-expiration of the long maturity option is shown in the column labeled maturity. Panel A presents
the mean returns and Sharpe ratios of the calendar spreads. Panel B presents the predictive regression of
the calendar spread returns on the slope and level factors. The Newey-West adjusted t-statistics are in the
parentheses.

Panel A: Expected Calendar Spread Returns

Maturity (months) SPX DJX NDX OEX
4− 6 0.194 0.206 0.234 0.185

(3.95) (3.33) (3.71) (3.83)
SR 0.31 0.30 0.29 0.29

7− 9 0.266 0.272 0.284 0.218
(4.43) (4.06) (3.63) (2.87)

SR 0.34 0.33 0.28 0.34

10− 12 0.303 0.319 0.289 -0.034
(4.58) (4.17) (2.83) (-0.35)

SR 0.34 0.33 0.30 -0.05

> 12 0.387 0.400 0.247 0.253
(4.11) (4.10) (1.90) (2.55)

SR 0.31 0.32 0.20 0.18

Panel B: Forecasting Calendar Spread Returns

Maturity (months) cslope clevel R2

SPX 4− 6 -0.131 (-3.90) -0.026 (-1.45) 0.152
7− 9 -0.132 (-2.99) -0.021 (-0.98) 0.105
10− 12 -0.158 (-3.19) -0.026 (-1.10) 0.113
> 12 -0.213 (-3.15) -0.037 (-1.22) 0.102

DJX 4− 6 -0.122 (-2.58) -0.018 (-0.74) 0.127
7− 9 -0.133 (-2.47) -0.018 (-0.67) 0.107
10− 12 -0.136 (-2.28) -0.014 (-0.48) 0.084
> 12 -0.184 (-2.54) -0.024 (-0.63) 0.088

NDX 4− 6 -0.073 (-1.75) -0.019 (-1.11) 0.016
7− 9 -0.125 (-3.20) -0.021 (-1.08) 0.046
10− 12 -0.180 (-2.78) -0.052 (-1.60) 0.129
> 12 -0.161 (-2.33) -0.024 (-0.70) 0.059

OEX 4− 6 -0.133 (-3.87) -0.026 (-1.71) 0.151
7− 9 -0.125 (-2.66) -0.005 (-0.17) 0.160
10− 12 -0.295 (-4.13) -0.054 (-2.25) 0.159
> 12 -0.257 (-2.14) -0.060 (-1.44) 0.092
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Table 11: Liquidity of Index Options

This table presents the daily average bid-ask spread, dollar volume (in thousands), and open interest (in
thousands) of both call and put options across all maturities. The spread is computed as relative spread,
normalized by the average of bid and ask prices. The sample period is 1996 to 2011.

Panel A: S&P 500 Index

Maturity (months) 2 4− 6 7− 9 10− 12 > 12
Bid-ask Spread 0.13 0.11 0.07 0.06 0.05
Dollar Volume 8353.34 6579.35 5021.63 4060.11 3675.22
Open Interest 4756.44 7289.83 5156.96 3653.45 3598.40

Panel B: NASDAQ Composite Index

Maturity (months) 2 4− 6 7− 9 10− 12 > 12
Bid-ask Spread 0.17 0.10 0.06 0.05 0.03
Dollar Volume 364.00 309.73 156.51 116.86 149.04
Open Interest 1228.59 924.49 1085.81 250.86 403.02

Panel C: Dow Jones Industrial Average Index

Maturity (months) 2 4− 6 7− 9 10− 12 > 12
Bid-ask Spread 0.23 0.17 0.12 0.10 0.08
Dollar Volume 938.05 1009.12 628.80 461.33 593.12
Open Interest 133.77 62.26 34.76 28.94 40.24

Panel D: S&P 100 Index

Maturity (months) 2 4− 6 7− 9 10− 12 > 12
Bid-ask Spread 0.12 0.09 0.09 0.08 0.04
Dollar Volume 541.77 402.32 496.75 410.38 138.61
Open Interest 483.71 290.17 211.63 168.97 108.35
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Table 12: Subsample Results

This table reports the mean returns of all delta-hedged option portfolios for the two subsample period. Mean
monthly returns are in percentages. The Newey-West adjusted t-statistics are in the parentheses. Panel A
presents the first half of the sample period and Panel B presents the second half. Missing observations are
left in blank.

Panel A: 1996 to 2003

Maturity (months) SPX NDX DJX OEX
2 -0.469 -0.227 -0.699 -0.488

(-3.90) (-1.14) (-4.47) (-3.96)
4− 6 -0.157 -0.210 -0.345 -0.191

(-1.33) (-1.07) (-2.31) (-1.53)
7− 9 -0.092 -0.159 -0.300 -0.027

(-0.76) (-0.72) (-2.01) (-0.19)
10− 12 -0.080 -0.282

(-0.63) (-1.83)
> 12 -0.031 -0.209 -0.942

(-0.19) (-1.21) (-3.21)

Panel B: 2004 to 2011

Maturity (months) SPX NDX DJX OEX
2 -0.310 -0.342 -0.321 -0.317

(-2.20) (-2.82) (-2.26) (-2.25)
4− 6 -0.234 -0.289 -0.230 -0.254

(-1.41) (-1.92) (-1.23) (-1.46)
7− 9 -0.146 -0.197 -0.147 -0.348

(-0.83) (-1.26) (-0.80) (-2.06)
10− 12 -0.093 -0.015 -0.077 -0.419

(-0.52) (-0.06) (-0.42) (-2.65)
> 12 0.025 -0.062 0.009 -0.034

(0.12) (-0.29) (0.05) (-0.15)
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Figure 1: Mean Returns and Level β

This figure plots the mean realized returns (r̂x = ET [R
e
t ]) of delta-hedged option portfolios (weighted average

of call and put options) against their variance level betas. The betas are computed by running time series
regression of each option straddle return against the 30-day risk neutral variance factor (level).
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Figure 2: Mean Returns and Fitted Returns

This figure compares the fitted returns (r̄x = β̂⊤λ̂) and the mean realized returns (r̂x = ET [R
e
t ]) of delta-

hedged option portfolios (weighted average of call and put options) measured by different models. Panel A,
B, C, and D report results from one factor model with level only, one factor model with slope only, two factor
model, and two factor augmented with market excess return, individually. All the returns are at monthly
frequency, and in percentage points.
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