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Abstract 

 
An important measure of the capital- land ratio in urban areas is the Floor Area Ratio (FAR), 

which gives a building’s total floor area divided by the plot size. Variations in the FAR across 

cities remain an understudied measure of urban spatial structure. We examine how the FAR 

varies across the five boroughs of New York City. In particular, we focus on the FAR gradient 

over the 20th century. First we find that the gradient became steeper in the early part of the 20th 

century, but then flattened in the 1930s, and has remained relatively constant since the mid-

1940s. Next we identify the slope of the gradient across space, using the Empire State Building 

as our core location. We find significant variation of the slope coefficients, using both ordinary 

least squares and geographically weighted regressions. We then identify subcenters, and show 

that while accounting for them can better capture New York’s spatial structure, by and large the 

city remains monocentric with respect to its FAR. Lastly, we find a nonlinear and nonmontonic 

relationship between plot sizes and the FAR across the city.  
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1. Introduction 

There is a large literature in economics on measuring the nature of urban spatial structure. The 

focus of these works tends to concentrate on density or price measures relative to the urban 

core.1 Collectively, this work has provided several key findings about the urban landscape. First, 

the price and density gradients drop off at an exponential rate moving away from the center. 

Second, over the 20th century there has been a steady and persistent flattening of the gradient, as 

central cities have, to some degree, ―hollowed out,‖ while suburban districts have seen large 

population and employment increases. Third, especially since the mid-20th century, urban spatial 

structure has become poly-centric. With the rise of ―edge cities‖ and smaller suburban 

agglomerations, population gradients -- while still dropping rapidly from the center -- tend to be 

―bumpy‖ across space.  

The aim of this work is to explore an important, but understudied, form of urban density—the 

intensity of land use that comes from the buildings themselves; that is, the structural density of 

the city (Brueckner, 1987). In particular we focus on the density of commercial structures. The 

few studies on structural density have tended to focus on housing (McMillen, 2006), but much 

less work has explored the ―shape‖ of commercial buildings across space and over time.  

One important measure of structural density is the floor area ratio (FAR), which is the ratio of 

total usable floor space to the size of the plot. For example, a 10-story building constructed on 

the entire lot would have a FAR of 10, as would a 20-story building on half the lot. The FAR is 

also a useful indicator of the capital- land ratio (McMillen, 2006, Clapp, 1980). As land values 

rise closer to the city center where transport costs are lower, the monocentric city model implies 

firms would substitute more capital (structure) for land (O’Sullivan, 2010).  

As McMillen (2006) stresses, the monocentric model is static in nature. It details how density 

should fall with distance from the center, at a given time, on the assumption that the parameter 

values are fixed. To address this issue we investigate the density gradient over both time and 

space. However, it might be the case that density and building age are related. If it is the case, for 

example, that older structures tend to exhibit a steeper FAR gradient with respect to the center, 

then not accounting for the age of the structure might bias the effects of distance from the center. 

Thus if age and distance are positively correlated, omission of the age variable will tend to bias 

the distance coefficients downward (or closer to zero). In this paper we control for possible 

vintage effects by including in the regression the years of completion for each building. 

In particular we focus on New York City from 1890 to 2009, and look at the FAR gradient 

across the city. Using a data set over such a long period allows us to investigate the shape of the 

gradient over time. Second, we investigate the degree to which the city is monocentric or not. As 

                                                 
1
 Anas, et al. (1998) summarize the findings on the population density gradient. Work on land prices include 

McMillen 1996 for Chicago and Atack and Margo (1998) for 19
th

 century New York.  McMillen and Singell (1992) 

provide evidence for wage grad ients. 
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we discuss in more detail below, we use the location of the Empire State Building as the center 

of the city.  New York City is comprised of 469 square miles of land, and contains a population 

of 8.2 million people. Because it is so large, it can be considered a metropolitan region worthy of 

investigation unto itself. Despite New York’s importance, its land use patterns remain 

understudied. 

In this paper we ask: (1) What does the structural density gradient look like relative to the 

center? (2) Has it changed appreciably over time? (3) Is there evidence of poly-centricity within 

the city itself? (4) Does controlling for the building age affect the estimates of the FAR gradient?  

Since we have data on the plot size, we also examine how lot size affects structural density 

across the city, investigating if lot size has a uniform effect, then is its effect is positive or 

negative? On one hand a large lot size can promote structural density, since it allows for a more 

efficient building layout and helps avoid the ―elevator problem‖ with skyscrapers, which must 

allocate a large fraction of internal space for elevator shafts. But this may apply only where land 

values are high. In areas were land values are lower, a large plot may encourage less density 

because of a concave relationship between price per square foot and size (Colwell and Munneke, 

1997). In other words, if the marginal cost of land is decreasing, so will the marginal provision of 

structure. It remains an empirical question how plot size and structure density are related.  

To answer these questions, we employ the methods of locally weighted regression. By and large, 

the density gradient literature has assumed a constant gradient coefficient across space, and uses 

ordinary least squares (OLS) to estimate the size of this coefficient. This assumption, however, 

can lead to biased estimates or standard errors since gradients can change over both time and 

space (McMillen and Redfearn, 2010). While OLS, for example, can include time dummy 

variables, they are not able to capture the subtle movements of the gradient.  

The LWR procedure estimates a separate coefficient for each observation. In particular, we 

estimate geographically weighted regressions, which are based on the geographic distances of 

each building from the others.2 We also incorporate a time dimension into the weight matrix that 

links all the buildings together. Since our data set includes buildings completed over the 20 th 

century, buildings completed in a certain year can only be influenced by completions in the same 

or prior years.   

LWR models are a more general approach that nests OLS. If the OLS assumption about constant 

gradient coefficients is correct, then LWR and OLS will yield the same results. However, for 

New York City, we find there is and has been a significant amount of variation in the FAR 

gradient coefficients over both time and space, which demonstrates that the OLS assumptions do 

not apply in this situation. 

                                                 
2
In particular we use one specific form of Locally Weighted Regressions, namely Geographic Weighted 

Regressions, which sets the weights as a function of the Euclidean distance between two buildings. For the 

remainder o f the paper we the use the term LW R when referring the method used in this paper.  
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Based on our results, we find that the gradient for the city as a whole dropped over the first half 

of the 20th century, then remained relatively steady between the late-1940s and mid-1980s, and 

then dropped to a new plateau over the last quarter century. The evidence also suggests a further 

flattening of the gradient since 2005. 

On first approximation the monocentric model appears to be a good representation of structural 

density in the city, but LWRs reveal several different ―centers of gravity,‖ which vary across 

boroughs. For example, the Empire State Building is a useful ―center‖ for structures completed 

within about 8 miles. After that, however, the further away one moves from the center, the less 

likely its influence is on the density gradient. In particular we find positive gradient coefficients 

at several points outside the center of the city. This provides evidence of several smaller ―nodes‖ 

within the city or adjacent to it. In addition we find that the exclusion of the year of completion 

variable does not appreciably affect the distance coefficients, suggesting we need not be overly 

concerned with vintage effects.  

As another test for spatial structure, we first run an OLS regression of the log of the FAR on 

several control variables, including the distance from the Empire State Building. Based on the 

OLS residuals we then identity five areas in the city with clusters of large positive residuals. We 

then include these ―subcenters‖ in the regressions and find that while distance to subcenter and 

airports are statistically significant, they do not increase the R2 by very much; this suggests that 

New York remains largely monocentric. Finally we investigate the LWR coefficients of plot size 

on the FAR relative to the center. We find that closer to the core, the effect is positive, and that 

after about four miles away from the center the effect becomes negative, on average, and after 10 

miles virtually all the coefficients are negative. Further, since the functional form is non- linear, it 

suggests that using OLS to estimate its affects may not be appropriate.  

The rest of the paper is as follows. The next section provides a brief literature review. Then 

Section 3 discusses the data and the results from ordinary least squares. Section 4 discusses the 

results from the geographically weighted regressions. Section 5 discusses how we identify 

subcenters and the results of OLS regressions with the subcenters. Section 6 presents the 

estimated plot size coefficients on the FAR across the city. Finally, Section 7 provides some 

concluding remarks. 

2. Literature Review  

There is a large literature on land rent and population gradients (Anas, et al., 1998), but little 

known work that directly addresses the FAR gradient. Some works have contributed to the FAR 

gradient literature indirectly, by examining the intra-urban location of tall buildings. One of these 

is Frankel (2007), who studies the determinants of locations of tall buildings in the Tel-Aviv 

municipal region. He finds, for example, a rising probability that 25+ floor buildings will 

constructed in the core district; and the likelihood of these very tall buildings falls as one moves 

away from the center. Clapp (1980) looks at the determinants of office space in the Los Angeles 
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metropolitan region, by estimating hedonic office rent equations. He finds that while subcenter 

access and distance to employees are important factors, they are weak relative to the pull of the 

central business district, where the benefits of face-to-face contacts remain strong. 

For New York City, Atack and Margo (1998) investigate land value gradients during the 19 th 

century, and find a general flattening of the land price gradient after the Civil War.  Haughwout 

et al. (2008) investigate the land value gradient from 1999 to 2006 in the New York City 

metropolitan area; their aim is to create a land value index over the period.  However, their data 

show a substantial amount of land value variation in Manhattan, which suggests a standard 

gradient model is too simple 

McMillen (2006) is the only known work that directly addresses the FAR gradient. This research 

includes estimation of the FAR gradient for individual homes in the city of Chicago, based on 

both OLS and Spline function approaches. McMillen (2006) notes that closer to the core, lower 

commuting costs should raise the value of land, which then should cause the FAR to be higher. 

This is a crucial reason for studying the FAR gradient – that is, to confirm this common 

underpinning of urban economics. If one confirms that the FAR gradient is downward sloping 

and monotonic in a city with only one core, this is consistent with the monocentric city model 

(O’Sullivan, 2010). One of our aims in this paper is to demonstrate that the FAR gradient for 

Manhattan implies a variation of the monocentric city model with perhaps two cores – the 

Empire State Building, and lower Manhattan–is applicable to the city. Furthermore, we 

demonstrate that several of the boroughs of New York City have cores of their own, implying a 

somewhat more intricate model than the simple monocentric city model might imply for a 

smaller city. 

As McMillen and Redfearn (2010) discuss, the use of OLS to measure effects that vary across 

geographic space can lead to biased results. One can include both spatial and time related fixed 

effects in the FAR gradient equation but these coefficients cannot capture the complex nature of 

a spatial structure. Thus it is necessary to employ more spatially-oriented estimation procedures. 

In particular, locally weighted regressions (LWR), by generating separate coefficient estimates 

for each observation, allow for a much more nuanced measurement of an urban area’s spatial 

patterns. Specifically, McMillen and Redfearn (2010) demonstrate that LWR leads to a much 

smoother distribution of residuals than fixed effects estimation, as well as helps to mitigate 

against omitted variable bias. 

McMillen (1996) uses LWR to analyze land values in Chicago. His results show how the spatial 

distribution of land values evolved from the 1830s to the 1990s. In the earliest period of 

Chicago’s history, land values were generally rising uniformly approaching the city center. 

However, LWR estimation shows that by the early twentieth century, land values took on a much 

more diverse picture, with multiple and smaller peaks throughout the city. By 1990 the land 

value gradients were quite varied throughout the city. A standard OLS approach would have 

difficulty in capturing this complex pattern.  
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Meese and Wallace (1991) estimate hedonic housing price models with LWR to compare to 

standard OLS estimates in several municipalities in California. By using LWR they can see how 

index values are determined, once freed from the functional form restrictions of OLS. They find 

that the LWR-generated indexes offer both considerable flexibility and precision.  McMillen and 

Redfearn (2010) estimate hedonic price functions in Chicago using LWR. Their results show that 

the effect of distance to an elevated subway line in Chicago can have either a positive or negative 

effect on housing price in different neighborhoods.   

3. Data 

The data set comes from the 2012 ―PLUTO‖ file provided by the New York Department of City 

Planning (http://www.nyc.gov/html/dcp/html/bytes/dwn_pluto_mappluto.shtml, 2013). This file 

lists extensive information for every property in the City of New York, including a unique 

identification number (the ―BBL‖—borough, block and lot number), building address, latitude 

and longitude coordinates, year completed, number of floors, the floor area ratio, the lot size, the 

building type (and sub-type), and other information related to zoning, and land use.  

For our analysis, we included observations from 1890 to 2009 which only had a single structure 

on the property. In addition, we removed some properties that had some extreme outlier 

characteristics, such as lots less than 100 square feet, and floor area ratios greater than 100. This 

created a base data set with 662,161 total properties of all types. Of this we only investigate 

commercial properties, i.e., those that housed a business of some kind.  

The work on spatial structure aims to look at density changes relative to the central core. For this 

paper, we chose the location of the Empire State Building (ESB), at West 34th Street and 5th 

Avenue as the ―center.‖ We choose this location because the ESB is generally considered the 

economic ―center of gravity‖ of the city (Haughwout, et al., 2009). It is in between lower 

Manhattan and the high-rise office district between 42nd and 59th Streets. Manhattan, in 

particular, in terms of its structural density is poly-centric.3 Because we are interested in the city 

as a whole (which extends some 20 miles outward from the ESB), we use it as an approximate 

center.  

We also note that the Empire State Building was completed in 1931, and our data set includes 

buildings from 1890 to 2009, so a large fraction of structures were completed before the ESB. 

However, the ESB represents a kind of central base location, from which the gradient can be 

calculated. Moving the center a mile or two in one direction does not appreciably affect the 

conclusions. We also explore the issues of multiple centers in the paper as well.  

 

 

                                                 
3
 See Barr and Tassier (2013) for the reason why midtown emerged as a separate business district.  

http://www.nyc.gov/html/dcp/html/bytes/dwn_pluto_mappluto.shtml
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3.1 Descriptive Statistics  

Table 1 lists the different types of commercial properties in our sample. There are approximately 

41,400 structures in our data set. Stores comprise the greatest proportion of commercial 

structures, with a total of approximately 16,000 or 40 percent. Garages/gas stations, and offices, 

are the next most common groups of commercial structures, with approximately 6,000 of each 

type. The remaining types of properties include warehouses (approximately 5,200), factories 

(approximately 3,600), and a relatively small number of lofts, hospitals, hotels, and theaters.  

{Table 1: Distribution of Building Types across NYC} 
 

Table 2 lists the distribution of structures across the five boroughs. Brooklyn (approximately 33 
percent) and Queens (approximately 30 percent) have the greatest amount, with Staten Island 

(slightly under 7 percent) last. Manhattan (17 percent) and Bronx (13 percent) are in the middle. 
 

{Table 2: Distribution of Commercial Structures in the Five Boroughs of NYC} 

Table 3 provides descriptive statistics for the FAR. As expected due to its relatively high land 

values compared with the other boroughs, Manhattan has the greatest average FAR (and the 

greatest standard deviation). Also, as predicted by its relatively low land values, Staten Island 

has the lowest structural density in the city. 

{Table 3: Descriptive Statistics for FAR across the Five Boroughs of NYC } 

3.2 The FAR Gradient 

Figure 1 shows the scatter plot of the log of FAR versus distance from the Empire State 

Building. On average the gradient is negative, as would be expected; thought it does not appear 

to be linear, as there appears to be a general flattening of the gradient further from the core. 

Except for the ―bump‖ for downtown Manhattan, there does not appear to be any obvious other 

sub-centers or deviations from the negative slope, but we will return to this issue in more detail 

in Section 5. 

{Figure 1: Scatter plot of lnFAR vs Distance to ESB} 

3.3 OLS Results 

In this section we present evidence on the nature of the FAR gradient from OLS equations. Table 

4 presents the results. We present four equations. Equation (1) is the distance gradient from a 

simple OLS regression. It shows that on, average, the FAR decreases about 13% per mile. 

Equation (2) is the gradient with quadratic and cubic terms. As the scatter plot shows, adding 

these terms provides a better fit, in terms of capturing the ―shape‖ of the gradient.  

{Table 4: OLS Results} 
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Equation (3) provides an additional set of controls. We add in the log of the plot size and log of 

plot size squared, the year and the year squared, borough dummies, and building type dummies. 

For this we included dummies for the sub-categories of building. For example, ―warehouses‖ are 

further divided by the city into ―fireproof,‖ ―semi- fireproof,‖ ―frame, metal,‖ etc. (See Pluto Data 

Dictionary for full list of types).  

Equation (1) shows that the simple OLS regression is able to account for about 25% of the 

variation in the FAR gradient across the city. Adding the squared and cubed terms—Equation 

(2)—brings it up to 31%.  

For the plot area, we see a negative relationship overall. For the Year variable there is a negative 

relationship, but the quadratic terms show a leveling off over time. Finally, we can see 

differences in average FAR levels across the city. As expected Manhattan has the greatest far 

(Staten Island is the omitted borough); Brooklyn, the Bronx and Queens, have roughly similar 

FAR values, on average, while Staten Island has the lowest structural density in the city.  

Equation (4) is the same as equation (3) but with the addition of polynomial terms for the 

distance variable. They add a marginally better fit. In general, the addition of controls reduces 

the size of the gradient coefficient. The polynomial terms show monotonicity is preserved. 

4. Locally Weighted Regressions   

Here, we use a version of weighted least squares, as suggested by McMillen and McDonald 

(2004). Implementation of the model gives an estimated parameter for each target observation 

(i.e., building): 

βi = (∑ wijXjX’j)
-1(∑ wijXjYj) , 

where Xj is a vector of control variables including the constant and the distance to the core for 

each observation except i; Yj the dependent variable (log of FAR) for all observations except i; 

wij is the weight that building j is given for building i; and the summations given by ∑ are taken 

over all buildings, j, and wii =0.  

We use a Gaussian (standard normal) weighting function (kernel) given by 

 

where dij is the Euclidian distance between building i and j (as measured in degrees latitude and 

longitude). McMillen (2010) notes that the choice of the kernel has little effect on the results 

since most kernel choices have rapid decay with distance. b>0 is the bandwidth parameter, 

discussed more below.  
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If the year of completion of the target observation, building i, was after the other buildings in the 

data set then the weight is a function of the geographic distance. If not, then the weight was set to 

zero.4 

The bandwidth parameter determines the ―variance‖ of the weights. A larger b means that, 

ceteris paribus, observations further away will have large weight values. For the LWRs, the 

bandwidth value was selected using the standard cross-validation (C-V) method. The C-V 

algorithm runs a LWR for each observation for a specific bandwidth value. Then a statistic is 

generated that is the mean squared residual of the LWR, where the residual is the difference 

between the target value (i.e., lnFARi) and the predicted target value, after omitting the ith 

observation from the model. The bandwidth that minimizes this statistic is used. See McMillen 

and McDonald (1997) for more information.  

For each estimated coefficient we also calculate a standard error, given by equation 2.21 in 

Fotheringham et al. (2002). This approach is similar to the F-statistics calculations procedure 

described in the appendix of McMillen and Redfearn (2010).  

4.1 LWR Results 

For the LWRs, we regressed the log of the floor area ratio ( lnFAR) on the log of plot size 

(lnArea), the year the building was constructed (Year) and the distance to the Empire State 

Building (DESB).  Note that the results are from using a bandwidth that minimize the C-V, 

which in this case gives b=0.02. We also compare the results from a regression of LnFAR on 

DESB and LnFAR on DESB and lnArea, omitting the year. 

Table 5 gives the descriptive statistics for the results. We separate the coefficient results into 

each borough for comparison. First, focusing on the distance coefficients we see that, on average, 

Manhattan has the largest (in absolute value) coefficients, and that the average and median are 

negative.  

4.2 FAR Gradient over Time 

Figure 2 shows the averages of the coefficients for each year. Figure 2a shows the (unweighted) 

averages of all the coefficients with standard errors bands equal +/-1.96*(average of the standard 

errors).   They show that starting in the 1920s, there was a general flattening of the gradient 

across the city. Then between around 1940 and 1985 the gradient remained relatively constant, 

hovering in the -0.11 range, when it started to flatten again. However, since the mid-2000, the 

average has started to decline a bit. 

Anas et al. (1998) report estimates for the population density gradient at three points in time (in 

miles), 1900, 1940, and 1950. They find it to be 0.32, 0.21, and 0.18, respectively. McDonald 

and McMillen (2007) report population a density gradient of 0.12 for New York in 2000.  While 

                                                 
4
 Setting some weights equal to zero is analogous to specifying a ―window‖ (see McMillen and Redfearn, 2010).  



10 

 

our results show the same direction, the FAR gradient for the city of New York appears to have 

small coefficients (in absolute value). For the decade of 1900 to 1909 our coefficient averages 

about 0.11, for the 1940s, the average is 0.05, 1950s is 0.06, and for 2000s is 0.04. Note that 

some of the difference across studies might also be related to the size of regions. Here we focus 

on only New York City, but when other studies include metropolitan areas it is likely to increase 

the size of the gradient, if density falls off rapidly outside of the central city proper.  

Figure 2b shows the averages of the coefficients over time for each borough separately. It shows 

that there are different patterns between Manhattan and the outer boroughs over time (Staten 

Island is omitted to increase clarity). By and large, the outer boroughs showed a general gradient 

flattening between 1900 and 1940, and have remained relatively constant since then.  

{Figure 2a and 2b: Avg. LWR coefficients over time.} 

Manhattan, on the other hand, has shown a different pattern. First, the average coefficients have 

consistently remained large (in absolute value) as would be expected given its importance in the 

national economy and its higher land values. Second we see that an opposite trend as compared 

to the other boroughs: the gradient in Manhattan appears to have steadily fallen until the early 

1960s. From there, over time, the gradient has flattened out. The gradient coefficients also show 

much more variation from year to year in Manhattan. In addition, Manhattan’s gradient seems 

much more sensitive to the business cycle—falling in years in which the economy is growing, 

and moving closer to zero in the years the economy is in recession or depression. For example, 

the 1930s to early 1940s, shows the coefficients moving closer to zero, then dropping until the 

mid-1960s. Another ―spike‖ toward zero occurs in the mid-1970s and the 1990s. The FAR’s 

movements over the course of the business cycle suggests that land values are quite sensitive to 

economic activity at the national level.  

Figure 3 shows the coefficient estimates versus distance from the Empire State Building. The 

results of each borough are presented in separate graphs. The overall pattern shows that the 

coefficients very close the Empire State Building are quite large (in absolute value) and moving 

away they get closer to zero. In general they flatten out, between mile 5 and 15. Then after that 

there are two areas, one at mile 15 and one at mile 20 where the coefficients go above zero This 

suggests that in these two areas there are smaller subcenters, on the fringes of the city. We have 

more to say about the subcenters in section 5 below. Figure 3 suggests that OLS estimates are 

misleading with regard to the shape of the coefficients across the city.  

{Figure 3a-d: LWR coefficients vs distance from ESB by borough} 

Figure 4 presents a type of intensity map for the distance coefficient estimates (Fotheringham, 

2002). Each point on the map is a t-statistic equal to the coefficient estimate divided its standard 

error. It shows the relative magnitude of the coefficients. Here we see concentric bands of 

coefficients; with the regions of positive coefficients. The dark red dots show the largest t–stats 

(in absolute value) and they are a semi-circular area around the Empire State Building.  



11 

 

The next semi-circle around that has smaller t-statistics, but all above 10 in absolute value. Two 

clusters of black dots (positive t-statistics) occur in three locations (the one in south-western 

corner of Staten Island is not shown on the map). One is located in Jamaica, Queens; the other is 

Far Rockaway, Queens. These suggest local ―centers of gravity.‖ Jamaica is a local 

transportation hub for the Long Island Railroad; Far Rockaway, perhaps, attracts business near 

John F. Kennedy Airport. The third cluster is in south west Staten Island, across the river from 

Perth Amboy, New Jersey (not shown on map).  

{Figure 4: T-stats map for LWR Coefficients} 

Since the LWR estimates give the slope of the density gradient, we compare them to the slope 

coefficients from OLS. In particular, we first took a moving average (25) of the LWR 

coefficients versus the distance to the ESB and plotted the scatter plot in Figure 5. Also 

presented is the slope of the estimated coefficients from the OLS regression equation (4) Table 4. 

In particular, we graph  

∂lnFARHat/∂(DESB)=-.215+2(.019)DESB-3(0.001)DESB2. 

Figure 5 shows the results. Over the graph suggests a kind of glass-half- full/glass-half-empty 

results. On average, the OLS slope coefficients share similar movement compared with the LWR 

coefficients; however, the LWR coefficients are able to capture more subtle movements in the 

density landscape. 

Finally, we reran the LWRs without the year to see if its omission dramatically changed the 

distance to the ESB coefficients. We found that it did not. In fact, the correlation coefficient for 

the two sets of coefficients was .99, and a regression of coefficients without the year on the 

coefficients with year gave an estimated slope coefficient of 1.01 and p-value=0.00. This 

suggests that LWRs might offer an ―antidote‖ to the problem of omitted variable bias.  

5. Subcenter Identification  

As a method to identify possible subcenters in New York City, we used the residuals from 

equation (4), table 4.  From this list of residuals we then mapped the clusters of residuals that (a) 

were greater than 1.47 (two standard deviations away from 0), and had more than 15 of these 

residuals within a quarter mile of each other. From this procedure we identified 6 centers or 

subcenters in order of size (based on size of cluster). Figure 6 shows the results.  

{Figure 6: Map of Subcenters} 

In Manhattan the area is north of Grand Central Station (Park and 53rd Street) and Wall Street. In 

Brooklyn, there is downtown Brooklyn , and in Queens there is Flushing and Jamaica, and in the 

Bronx there is The Hub neighborhood (at East 149th and Third Avenue). The process did not 

yield any centers for Staten Island. We note that technically midtown and downtown are not 
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subcenters, but actual centers in their own right, but for exposition we refer to them as subcenters 

because of the way we identify them in this section.  

A word is in order about the criteria we used. We recognize there is some arbitrariness in 

determining the subcenters across the city. However, our aim is to find the largest and most 

important ones. If we reduced either one of the thresholds, we risked the possibility of including 

false positive identifications, in the sense that a cluster of positive residuals might simply reflect, 

for example, a public housing development rather than a true concentration of structural density.   

In the end the rule we chose seemed to be a reasonable balance between identifying subcenters 

while not being overly liberal. The OLS regressions bear this out in the sense that the coefficient 

estimates for the distance to subcenters are statistically significant, but even including the largest 

ones don’t increase the R2 by a large amount. Also note that we obtained the exact same centers 

when positive residuals greater than one standard deviation, and 45 or more were clustered 

within a quarter mile of each other.  

We also note that work by McMillen (2001) has used LWRs to identify subcenters. With our 

data set, we found that we were able to identify the same subcenters when using the LWR 

residuals. In particular, when we took positive LWR residuals that were one standard deviation 

away and had 15 or more clustered within a quarter mile of each other, the same six subcenters 

appeared. 

Lastly, we also included measures of the distance to the closest airport. New York City has two 

airports, Laguardia and John F. Kennedy. Distance to these might also affect density, since they 

are transportation hubs. In the end, we found that the best specification was to divide the distance 

variable into two. The first variable is the distance to the closest airport times a dummy variable 

that takes on the value of one if the distance is less than five miles, and zero otherwise. The 

second variable is the distance to the airport times a dummy variable that takes on the value of 

one if the distance is between five and ten miles away, and zero otherwise. The results show that 

moving further away the effect of the airports diminishes. For locations close the airport the FAR 

density gradient is close to 0.06 on average. For the next group it falls to about 0.014, on 

average. 

6. The Effect of Plot Size Across the City 

In both the OLS regressions and LWRs we included the plot size as an explanatory variable. The 

OLS results show that, on average, there is a negative relationship between the lot size and the 

FAR, though the functional form appears nonlinear. Figure 7 shows a scatter plot of the plot area 

estimated coefficients versus the distance from the Empire State Building. Here we can see that 

the LWRs paint a more subtle picture as compared to the OLS results. Each borough is given a 

different color to see how the coefficients vary across the city.  
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The results show that for most of Manhattan and the western portions of Brooklyn and Queens, 

the coefficient estimates are positive, on average. After about four miles away, the average 

becomes negative, and slowly decreases, so that by 10 miles away virtua lly all of the coefficients 

are less than zero. As well the magnitude of the coefficients (in absolute values) steadily 

becomes larger as one moves away from the center.  

While we leave a more detailed treatment of this result for future work, the relationship is most 

likely due to three factors: land values, the types of businesses, and zoning. Because land values 

are much higher closer to the center, each plot of land is likely to be used more intensively. 

Having a larger plot of land allows the developer to overcome the problems associated with 

elevators. Since a skyscraper requires that a large fraction of its internal space is devoted to 

elevator shafts, a larger lot can allow a developer to build a taller building and reap a greater 

return (Barr, 2012). 

Moving away from the center, as land values drop, there is less economic pressure to use the plot 

more intensively, and our results show that, in fact, at some point, larger plots are associated with 

less structural density. This negative effect might also be related to the types of businesses that 

are likely to locate further out from the center. In particular, in the outer boroughs there are more 

likely to be retail services that cater to the neighborhood populations, including supermarkets, 

shopping centers, and automobile repair shops. These types of stores mostly likely prefer a 

flatter, rather than taller, configuration because it is easier for shoppers or workers to navigate 

through the space.5 

Lastly, it is also likely that zoning rules play a role. First if the zoning laws reduce the FAR 

limits in the suburban parts of the city, it will legally promote the relationship we see in Figure 7. 

Second, if the zoning rules require developers to provide on-site parking, then this will force a 

less- intensive use of space, all else equal. Where land values are relatively cheap, developers 

prefer to provide grade-parking, rather than decks or underground garages, because of the 

additional expense.  

Conclusion 

This paper explores a less commonly investigated component of urban spatial structure—the 

Floor Area Ratio (FAR), which is a measure of the capital- land ratio. In particular, our goal is to 

investigate the FAR gradient across both time and space. We focus on New York City from 1890 

to 2009, incorporating practically every extant commercial building in the city—some 40,000 

structures completed over the last 120 years. By controlling for the age of the structures, we are 

able to determine the FAR gradient over time, with little concern for possible vintage effects. 

                                                 
5
 Consider that even in Manhattan most supermarkets are on one floor, and occasionally, only in the most busy 

districts do you sometimes find a supermarket with a second level. 



14 

 

We estimate the FAR gradient by both ordinary least squares (OLS) and locally weighted 

regressions (LWRs). We find that the LWRs are better able to better capture the changes in the 

gradient over time, as compared to OLS. In particular we find that the gradient steepened in the 

early part of the 20th century, and then began to flatten in the mid part of century, with a plateau 

around 1945. 

We also find a very different gradient pattern over time in Manhattan, relative to the other 

boroughs. In particular, Manhattan’s FAR gradient is much steeper, as would be expected, but it 

also appears to be very sensitive to the business cycle—flattening during downturns and 

becoming steeper during boom times. This most likely reflects the sensitivity of Manhattan’s 

land values to the general level of U.S. output.  

Next we compare the LWR gradient coefficients to the slope of the OLS coefficients. We find 

that while a cubic functional form for OLS is a reasonable measure of the FAR gradient, it does 

not capture the more subtle patterns across space. In particular we find that in some locations in 

the outer boroughs the gradient with respect to the center is positive.  

This suggests then that there are other ―centers of gravity‖ throughout the city. To explore this in 

more detail we identify possible subcenters by looking at positive clusters of OLS residuals. This 

procedure identifies six subcenters (two in Manhattan, one in Brooklyn, one in the Bronx and 

two in Queens). We then rerun the OLS equations with distance to nearest subcenter and distance 

measures to the city’s airports. We find that while these additional controls are statistically 

significant, they do not appreciably increase the R2, suggesting that beyond Manhattan, 

subcenters are not as important.  

Finally, we investigate the relationship between the plot area coefficients from the LWRs and 

distance from the center. We find that close to the center, the coefficients are positive, suggesting 

that large plots allow land to be used more intensively there. But moving away from the center 

the relationship becomes negative, on average, suggesting large plots are used less intensively 

further away from the center. We leave further exploration of this relationship for future work, 

but we hypothesize that it is related to land values, the mix of businesses in different parts of the 

city, and zoning regulations. 
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Tables 

 

Building Type Count         Percent 

Stores  16,726 40.4 

Garages/Gas Stations  6,738 16.3 

Offices  5,959 14.4 

Warehouses  5,240 12.7 

Factories/Industrial  3,644 8.8 

Lofts  1,287 3.1 

Hospitals/Health  987 2.4 

Hotels  662 1.6 

Theaters  154 0.4 

Total 41,397 100 

Table 1: Distribution of Building Types across NYC (excludes residential buildings, asylums and nursing 

homes, houses of worship, condominiums, parks buildings, and utility properties) 

 

Borough Frequency Percent Cumulative  

Brooklyn 13,942 33.68 33.68 

Bronx 5,407 13.06 46.74 

Manhattan 6,857 16.56 63.3 

Queens 12,447 30.07 93.37 

Staten Island 2,744 6.63 100 

Total 41,397 100  

Table 2: Distribution of Commercial Structures in the Five Boroughs of NYC  

 

Borough Mean Std. Dev Min. Max. Nobs. 

BK 1.38 1.20 0.01 23.96 13,567 

BX 1.13 0.94 0.01 12.14 5,132 

MN 5.84 5.87 0.02 87.67 6,831 

QN 1.20 1.37 0.01 37.6 11,781 

SI 0.65 0.50 0.01 6.03 2,642 

NYC 2.00 3.18 0.01 87.76 39,353 

Table 3: Descriptive Statistics for FAR across the Five Boroughs of NYC *difference is nobs . are due to 

missing FAR values . 
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 (1) (2) (3) (4) 

Dist. to Empire State -0.129 -0.507 -0.053 -0.215 

 (109.10)** (64.98)** (37.60)** (22.65)** 

(Dist. to ESB)
2
  0.044  0.019 

  (42.67)**  (16.87)** 

(Dist. to ESB)
3
  -0.001  -0.001 

  (34.13)**  (15.41)** 

Ln(Lot Area)   -0.168 -0.177 

   (3.14)** (3.32)** 

Ln(LotArea)
2 

  0.005 0.005 

   (1.48) (1.63) 

Year   -0.46 -0.477 

   (20.25)** (21.05)** 

Year
2
   0.0001 0.0001 

   (20.22)** (21.02)** 

Brooklyn Dummy    0.353 0.424 

   (20.06)** (22.48)** 

Bronx Dummy    0.305 0.366 

   (16.16)** (18.00)** 

Manhattan Dummy    1.27 1.163 

   (52.03)** (46.23)** 

Queens Dummy   0.266 0.309 

   (15.14)** (16.84)** 

Constant 1.05 1.79 452.1 468.9 

 (109.35)** (106.49)** (20.35)** (21.16)** 

# Observations 39953 39953 39944 39944 

R
2
 0.26 0.31 0.42 0.42 

Building Type Dummies   Yes Yes 

P-val for Dummies   0.00 0.00 

Table 4: OLS Regression Results. Dependent Variables is ln(FAR) for commercial structures. ** Stat. sig. at 

99% ; *Stat. sig. at 95% . Absolute value of robust t-statistics below coefficient estimates.  
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Variable  Mean St. Dev. 

Avg. St. 

Err. Min. Max. # Obs. 

New York City 

Dist. ESB -0.11 0.12 0.02 -1.27 1.77 39944 

Ln(Area) -0.06 0.22 0.03 -1.68 1.30 39944 

Year -0.01 0.03 0.01 -0.83 2.38 39944 

Brooklyn 

Dist. ESB -0.10 0.09 0.01 -0.55 0.35 13566 

Ln(Area) -0.10 0.11 0.03 -1.03 1.30 13566 

Year -0.01 0.01 0.00 -0.68 1.00 13566 

Bronx 

Dist. ESB -0.09 0.05 0.02 -0.80 0.76 5132 

Ln(Area) -0.08 0.10 0.04 -1.19 0.62 5132 

Year -0.01 0.02 0.00 -0.23 0.41 5132 

Manhattan 

Dist. ESB -0.23 0.13 0.02 -0.67 0.25 6829 

Ln(Area) 0.32 0.15 0.03 -1.41 0.49 6829 

Year 0.00 0.05 0.01 -0.10 2.38 6829 

Queens 

Dist. ESB -0.09 0.13 0.02 -1.27 1.77 11780 

Ln(Area) -0.15 0.13 0.03 -1.68 0.73 11780 

Year -0.01 0.02 0.01 -0.83 0.66 11780 

Staten Island 

Dist. ESB -0.08 0.13 0.04 -1.26 0.56 2637 

Ln(Area) -0.32 0.11 0.06 -1.00 0.96 2637 

Year 0.00 0.02 0.01 -0.59 0.40 2637 

Table 5: Descriptive statistics for coefficient estimates from the locally weighted regressions. 
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 (1) (2) (3) (4) 

Dist. to Empire State Bldg. -0.215 -0.238 -0.203 -0.213 

 (22.86)** (18.71)** (21.34)** (16.76)** 

(Dist. to ESB)
2 

0.019 0.026 0.017 0.022 

 (17.54)** (13.97)** (15.67)** (12.01)** 

(Dist. to ESB)
3 

-0.001 -0.001 -0.0004 -0.001 

 (13.78)** (12.18)** (11.75)** (10.48)** 

Ln(Area) -0.19 -0.14 -0.198 -0.145 

 (3.60)** (2.65)** (3.73)** (2.74)** 

Ln(Area)
2 0.006 0.003 0.006 0.003 

 (1.91) (1.00) (2.10)* (1.15) 

Year -0.454 -0.453 -0.455 -0.452 

 (20.24)** (20.38)** (20.28)** (20.37)** 

Year
2 

0.0001 0.0001 0.0001 0.0001 

 (20.21)** (20.34)** (20.25)** (20.33)** 

Brooklyn Dummy 0.239 0.579 0.274 0.627 

 (11.50)** (21.75)** (12.42)** (22.83)** 

Bronx Dummy 0.105 0.458 0.212 0.594 

 (4.40)** (15.64)** (8.41)** (19.44)** 

Manhattan Dummy 0.872 1.193 0.93 1.27 

 (30.56)** (37.03)** (31.97)** (38.81)** 

Queens Dummy 0.018 0.411 0.138 0.571 

 -0.78 (14.03)** (5.76)** (18.79)** 

Dist. to Closest Subcenter -0.064 -0.211 -0.072 -0.237 

 (21.04)** (20.67)** (23.30)** (23.07)** 

(Dist. to Subcenter)
2 

0.026  0.03 

  (12.76)**  (14.51)** 

(Dist. to Subcenter)
3 

-0.001  -0.001 

  (6.24)**  (7.71)** 

Dist. Closest Airport x Less than 5 Miles -0.057 -0.064 

   (16.35)** (18.31)** 

Dist. Closest Airport x (5 – 10 Miles) -0.015 -0.013 

   (9.34)** (8.61)** 

Constant 446.4 444.8 447.0 443.9 

 (20.37)** (20.50)** (20.42)** (20.50)** 

R-squared 0.43 0.44 0.43 0.44 

Table 6: OLS regressions with distance to closest subcenter and airport . Robust t-statistics in parentheses. ** 

Significant at 99% ; * significant at 95% . Note all regressions have 39,944 observations; all include building 

types dummies (with p-values =0.00). 
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Figure 1: Scatter plot of ln(FAR) versus distance from the Empire State Building for Commercial Structures.  
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Figure 2. Top (2a): average LWR coefficients over time for NYC, 1900-2009. Bottom (2b): average 

coefficients over time for each borough (Staten Island Not shown), 1910-2009.
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Figure 3: LWR coefficient estimates vs. distance from the Empire State Building (miles). Top left (3a): Manhattan and Bronx. Top right (3b): Brooklyn. 

Bottom left (3c): Queens. Bottom Right (3d): Staten Island. Note vertices may have different lengths across graphs.  
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Figure 4: Map of t-stats of GWR distance to ESB coefficients. Note Staten Island note shown.
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Figure 5: Moving Avg. (25) of GWR distance coefficient estimates vs. slope from OLS regression (Table 4, 

equation (4 )). 
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Figure 6:  Clusters of positive residuals used to identify sub-centers in New York City. 
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Figure 7: Scatter plot of plot area coefficients from GWRs versus distance from the Empire State Building  

 


