

| Proportional reasoning                                                                                 |
|--------------------------------------------------------------------------------------------------------|
| • What is proportional reasoning?                                                                      |
| <ul> <li>What does it look like when a student can</li> </ul>                                          |
| reason proportionally?                                                                                 |
| <ul> <li>How does this differ from the ability to solve a<br/>problem/execute an algorithm?</li> </ul> |
| • Why is this important for me and my students?                                                        |
|                                                                                                        |
|                                                                                                        |
|                                                                                                        |

| Highlights from June                           |
|------------------------------------------------|
| • Ratio                                        |
| • Equivalent ratios                            |
| • Proportions                                  |
| Absolute vs. Relative reasoning (Lamon, 2006)  |
| • Multiple ways to solve proportional problems |
| • Ratio Tables                                 |
| Double Number lines                            |
| Strip Diagrams                                 |
| <ul> <li>Setting up a Proportion</li> </ul>    |
|                                                |

## Example 1.

- A. How much orange concentrate should we use with 48 cups of water, if we want to get orange juice that tastes the same as a mixture that uses 3 cups of concentrate for every 4 cups of water?
- B. How much concentrate should we use to make 105 cups of orange juice?

## **Example 2. Mary, Megan, and Chocolate!**

- Mary and Megan share a chocolate bar. If Mary's part is ¼ times as large as Megan's part, then
  - a. What is the ratio of Mary's to Megan's part?
  - b. How large is Megan's piece compared to Mary's?
  - c. What is the ratio of Megan's to Mary's part?
  - d. How much of the bar is Mary's part? and Megan's?
- What if Mary's is 3/2 times the size of Megan's?

## How would you solve these problems

- Jake drove 72 miles during the first hour of his trip. How long will it take to drive the entire 144 miles of his trip?
- 2. In a pie-eating contest, Juarez ate two pies in the first five minutes. How many pies can he eat in one hour?
- 3. It took Denise 20 minutes to complete 10 out of the 20 problems that were assigned. How long will it take her to complete all 20 problems?
- 4. Jim can mow the lawn in 45 minutes. Today Janyce is helping him. How long will it take for the two of them to mow the lawn?
- 5. Today is Sally's birthday. She is 7 years old. At some time in the future, John will have his 39th birthday. At that time, he will be 3 times as old as Sally. How old is John now?

| Proportional thinkers can identify proportional                                                               |   |
|---------------------------------------------------------------------------------------------------------------|---|
| from non-proportional situations, and will not blindly set up a proportion if the situation does              |   |
| not involve a proportional relationship.                                                                      |   |
|                                                                                                               |   |
|                                                                                                               | - |
|                                                                                                               |   |
|                                                                                                               |   |
|                                                                                                               |   |
|                                                                                                               |   |
|                                                                                                               |   |
|                                                                                                               | 1 |
| Can we always use proportions?                                                                                |   |
| <b>Think-pair-share</b> What are the characteristics of proportional                                          |   |
| situations?                                                                                                   |   |
|                                                                                                               |   |
|                                                                                                               |   |
|                                                                                                               |   |
|                                                                                                               |   |
|                                                                                                               |   |
|                                                                                                               |   |
|                                                                                                               |   |
|                                                                                                               |   |
|                                                                                                               |   |
| Can we always use proportions?                                                                                |   |
| 1. If you travel to a foreign country, you                                                                    |   |
| exchange dollars for the currency used there. In England you could exchange \$3 for 2 pounds.                 |   |
| How many pounds could you exchange for \$21?                                                                  |   |
|                                                                                                               |   |
| <ol><li>Sue and Julie were running equally fast<br/>around a track. Sue started first. When she had</li></ol> |   |
| run 9 laps, Julie had run 3 laps. When Julie had                                                              |   |
| completed 15 laps, how many laps had Sue run?                                                                 |   |
|                                                                                                               |   |
|                                                                                                               |   |

## Activity 1: Students' Work We will work on this in two groups: One group stays here (with Fabiana): 2<sup>nd\_</sup> 5<sup>th</sup> grade teachers and math coaches. Another group in Room TBA (with Álvaro): 6<sup>th</sup> grade – high school teachers.

| Why is this important?                                  |
|---------------------------------------------------------|
| • What is proportional reasoning?                       |
| • Why do our students need to learn to reason this way? |
| • What do our students struggle with?                   |
| • How can we support them? Early grades? Later on?      |
|                                                         |
|                                                         |