Instructor	Arash E. Zaghi, PhD, PE, SE (California, Connecticut, Nevada) Storrs Campus: CAST, Room 117		
Class Hours	WeFr 11:15AM - 12:30PM		
Office Hours	With prior arrangement.		
Email	arash.esmaili_zaghi@uconn.edu (Please include CE 5090 in the subject line)		
Texts	 Required: Class notes and handouts Recommended (not required): M. J. N. Priestley, F. Seible and G. M. Calvi (1996) Seismic Design and Retrofit of Bridges. John Wiley & Sons, Inc. 		
	(Available Online through Library)		
	 References: AASHTO (2012), Guide Specifications for LRFD Seismic Bridge Design, 2nd Edition FHWA (2014), LRFD Seismic Analysis and Design of Bridges Reference Manual, Publication No. FHWA-NHI-15-004. Caltrans (2015), Bridge Design Practices, Chapter 4, Structural Modeling and Analysis, California Department of Transportation, Sacramento. Caltrans (2015), Bridge Design Practices, Chapter 21, Seismic Design of Concrete Bridges, California Department of Transportation, Sacramento. Caltrans (2013) SDC: Caltrans seismic design criteria version 1.7, California Department of Transportation, Sacramento. 		
Prerequisites	Design of Steel Structures, Design of Reinforced Concrete Structures, Structural Analysis, Earthquake Engineering or Structural Vibration		
Attendance	Students are expected to attend all classes. There will be no makeup for the worked missed during the class.		
Goals	In this course, we will discuss key concepts of seismic design of bridge structures. The course is expected to provide you with an in-depth understanding of capacity design. This knowledge is critical for you when performing advanced analyses, such as nonlinear analysis. This course relies heavily on project-based learning.		

CE 5090 Advanced Topics in Civil Engineering Seismic Design of Bridge Structures

Tentative Grading Distribution

	Homework	20%	
	Term Project	60%	
	Final Defense (in person, individual)	20%	
Final Defense	After the submission of your final project, I will meet with you individually and ask questions about the projects, assumptions you made, your approach, etc. By that, I verify that you were fully involved and you have a good understanding of the concepts.		
Homework	The due dates will be defined on the homework statements. Late submissions will not be accepted. Your presentation, format and neatness count toward your grade.		
Term Project	You will be designing the substructure and abutments of a real brid. The project will be done by pre-assigned teams of two students about the term project are presented in a separate handout.	•	
Cell Phones	Cell phones are not permitted to be used during the lecture. Laptops or tablets may ONLY be used to take notes or for class activities. Please be advised that texting and using laptops for other reasons distracts me and others; therefore, I may ask you to leave the classroom.		
Software	We will be using CSiBridge v. 19. One group will also use OpenSees analyses.	for some of the	

Course Content

- 1- Introduction
- 2- Lessons Learned from Past Earthquakes
- 3- Seismic Design Concepts
 - a. Chain Analogy for Capacity-Protected Design
 - b. Force-Based Method (FBM)
 - c. Displacement-Based Method (DBM)
- 4- Sections Analysis
 - a. Material Properties
 - b. Moment-Curvature Analysis
 - c. Interaction of Axial Forces and Bending Moments
- 5- Plastic Displacements
 - a. Plastic Hinge Length
 - b. Yield and Ultimate Displacements
 - c. Pushover Analysis
- 6- Design Displacement, Elastic Analysis Method

- a. Uniform Load Method
- b. Single Mode Spectral Method
- c. Multi-Mode Spectral Method
- 7- Caltrans SDC1.7
- 8- Nonlinear Time History Analysis
- 9- Design of Abutments
- 10- Pipe-Pin Design
- 11- In-Span Hinge Design