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The paper addresses data-driven statistical pattern identification in complex dynamical systems,
where the concept is built upon thermodynamic formalism of symbolic data sequences in the setting
of lattice spin systems. The transfer matrix approach has been used for generation of pattern vectors
from time series data of observed parameters. Efficacy of pattern identification is demonstrated for
early detection of anomalies �i.e., deviations from the nominal pattern� on an experimental apparatus
of nonlinear active electronic circuits. © 2007 American Institute of Physics.
�DOI: 10.1063/1.2807686�

A critical issue in the study of natural and human-
engineered complex systems is to adequately describe the
dynamics of the underlying process by a computationally
tractable mathematical model in closed form. However, high
dimensionality, underlying chaotic behavior, nonlinear and
nonstationary dynamics, and noisy excitation often restrict
applications of the fundamental laws of physics because of
inadequate modeling accuracy and precision.1 As such, the
problem is investigated using alternative means of extraction
of useful information from the time series data of selected
observables �e.g., sensor information�.

Analysis of dynamical systems using the tools of statis-
tical mechanics,2 called thermodynamic formalism,3,4 has
been a subject of significant interest over the last few de-
cades in the field of applied physics and computational me-
chanics. In statistical mechanics, the macroscopic behavior
of a system, represented by a few intensive parameters �e.g.,
pressure and temperature�, is expressed in terms of the ex-
pected values obtained from the probability distributions of
the microstates. These distributions are postulated based on
the microscopic activities of individual particles and their
�possible� mutual interactions. Similarly, in a dynamical sys-
tem, the macroscopic properties that represent the expected
behavior of the system can be derived from statistical pat-
terns �e.g., probability distributions and statistical correla-
tions� generated from time series data of observable sensor
and/or analytical measurements.5 These statistical patterns
provide a link between the microscopic and macroscopic be-
havior of a dynamical system.

The paper presents data-driven pattern identification in
dynamical systems using the transfer matrix method of lat-
tice spin systems.2,4,6 The pattern identification problem is
formulated such that both stationary and quasistatically
evolving dynamics of the underlying system can be de-
scribed in terms of the behavioral patterns of an analogous
lattice spin system. The analogy is developed for a one-
dimensional Potts model that describes a lattice spin system
using a spin alphabet S with �S��2. �Note that the Potts
model is a generalization of the Ising model that is restricted
to the binary alphabet, i.e., �S�=2.� The key contributions of
the paper are delineated below.

�1� Pattern identification in dynamical systems built upon
the concepts of statistical mechanics of lattice spin sys-
tems.

�2� Construction of an appropriate Hamiltonian from the
symbol sequence to establish an analogy between the
methods of symbolic dynamics and the transfer matrix
analysis of lattice spin systems.

�3� Representation of an r-Markov sequence �r�1� by a
Potts model with interactions of range r, such that the
nearest-neighbor interactions �i.e., r=1� correspond to a
standard Markov sequence �see Eqs. �4� and �7��.

�4� Concept validation with experimental data of an active
nonlinear electronic system

The tools of symbolic dynamics are often used to study the
behavior of complex dynamical systems,7 where the state
trajectory is represented by a sequence of symbols.5,7 Let
��Rn be a compact �i.e., closed and bounded� region
within which the �stationary� motion is circumscribed under
a given exogenous stimulus. The region � is partitioned as
��1 , . . . ,����� consisting of ��� mutually exclusive �i.e.,
� j ��k=�, ∀j�k�, and exhaustive �i.e., � j=1

��� � j =�� cells,
where � is the symbol alphabet that labels the partition seg-
ments. Each initial state x0�� generates a sequence of sym-
bols defined by the mapping M :�→� such that

x0 � �0�1�2, ¯ ,�k, ¯ , �1�

where �i�M�xi�. The mapping in Eq. �1� is called symbolic
dynamics as it attributes a legal �i.e., physically admissible�
symbol sequence to the system dynamics starting from a
given initial condition. This symbolic representation of qua-
sistationary time series of observed parameters is construc-
tively similar to the structure of a lattice spin system such
that an observed symbol �k�� at time k is analogous to a
spin sk�S at a lattice site k.6 Since the Potts model repre-
sents a lattice system with a spin alphabet S, an analogy is
formulated with the symbol sequence generated from a dy-
namical system with a symbol alphabet �, such that �S�
= ����2. The equivalence is illustrated in Fig. 1 for the sim-
plest case of an Ising model with S= �↑ , ↓ �, which is analo-
gous to the symbol sequence generated with �= �0,1�. In
general, spin systems can be translated into symbolic sto-
chastic processes and vice versa.4
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The local space-time behavior of a thermodynamic sys-
tem’s constituents is described by a Hamiltonian; an analo-
gous approach for dynamical systems is presented here.
Since stationary �possibly Markov� symbol chains are fre-
quently used to construct statistical models of dynamical sys-
tems, the Hamiltonian H�� for an observed symbol sequence
�� can be expressed as a function of the conditional probabil-
ity of occurrence of �� at the initial state q0. In this paper, H��

is defined as

H�� � − ln�P��� �q0�� , �2�

where q0��r−1 , . . . ,�0 is the initial state of length r, ��
��n+r−1 , . . . ,�r is the observed sequence of length n, and
P��� • � is the conditional probability of � given •. Equation
�2� implies that H�� is non-negative and finite �i.e., 0�H��

���. Given the initial state q0, a deterministic sequence
whose probability of occurrence is one has zero energy �i.e.,
H�� =0�; similarly, a sequence that is forbidden from state q0
must have energy tending to infinity. In general, all se-
quences that have the same probability of occurrence from a
given initial state q0 form an equivalence class of systems
having the same energy in the statistical mechanical sense.

Let r be the order of the Markov model of the dynamical
system which is analogous to the effect of range r interac-
tions in a spin system. In general, for r�1, H�� from Eq. �2�
can be factored into the structure of a generalized Ising
model �i.e., the Potts model� as derived below,

H�� = − ln�P��� ��r−1, . . . ,�0��

= − ln�P��n+r−1, . . . ,�r��r−1, . . . ,�0��

= − ln�P��n+r−1��n+r−2, . . . ,�0�, . . . ,P��r��r−1, . . . ,�0��

⇒ H�� = − ln	

k=0

n−1

P��k+r��k+r−1, . . . ,�0�� . �3�

For an r-Markov process, Eq. �3� reduces to

H�� = − ln	

k=0

n−1

P��k+r��k+r−1, . . . ,�k�� . �4�

Since P�x�y� �y�z��= P�x� �y�z��P�y� �y�z��= P�x� �y�z��, where x�, y�, and z�
are any finite adjacent strings on a symbol sequence, we
obtain

P��k+r, . . . ,�k+1��k+r−1, . . . ,�k� = P��k+r��k+r−1, . . . ,�k�
�5�

for x� =�k+r, y� =�k+r−1 , . . . ,�k+1, and z�=�k. It follows from
Eqs. �4� and �5� that

H�� = − ln	

k=0

n−1

P��k+r, . . . ,�k+1��k+r−1, . . . ,�k�� ⇒ H�� =

− �
k=0

n−1

ln�P�	k+1
r �	k

r�� , �6�

where 	k
r ��k+r−1 , . . . ,�k and 	k+1

r ��k+r , . . . ,�k+1 are the
states of length r. Equation �6� has the structure of a gener-

alized Ising model, where the interaction energies are repre-
sented by the logarithms of the transition probabilities
between the adjacent states on a symbol sequence.1,4 For a
Markov process �r=1�, i.e., nearest-neighbor interactions,
Eq. �6� reduces to

H�� = − �
k=0

n−1

ln�P��k+1��k�� . �7�

The analytical solution of one-dimensional spin systems
with finite-range interactions is derived by expressing the
partition function in terms of its finite-dimensional transfer
matrix; all thermodynamic information is encoded in the
transfer matrix.4 The solution assumes cyclic periodic condi-
tions ��n+k−1=�k−1 for k=1, . . . ,r�, which are statistically ir-
relevant for sufficiently large data sequences.2 Analogous to
statistical mechanics, the partition function for a dynamical
system �assuming the inverse temperature 
 equal to 1� is
defined as

Zn = �
��

exp�− H��� = �
�r

¯ �
�n+r−1

exp�− H��� , �8�

where the summation is taken over all possible symbol se-
quences of length n.2 Equations �6� and �8� yield

Zn = �
�r

¯ �
�n+r−1

exp�
k=0

n−1

ln�P�	k+1
r �	k

r���
= �

�r

¯ �
�n+r−1



k=0

n−1

P�	k+1
r �	k

r� ⇒ Zn

= �
�r

¯ �
�n+r−1



k=0

n−1

T	k
r,	k+1

r , �9�

where T	k
r,	k+1

r = P�	k+1
r �	k

r�. Since with symbol alphabet �,
	k

r, and 	k+1
r can each have ���r possible configurations, a

���r� ���r transfer matrix T �Ref. 4� is defined whose �i , j�th

term is T	r�j�,	r�i�, where 	r�i� and 	r�j� represent the ith and
the jth configurations of states of length r, respectively. For
example, if �= �0,1� and r=2, then ���r=4, where the pos-
sible states are �00,10,01,11� and the 4�4 transfer matrix
includes all transition probabilities between these states. It
can be shown2,4 that Eq. �9� is the same as Zn=Trace�Tn�.

The statistical information of an r-Markov process is en-
coded in the transfer matrix T. The elements of T are state
transition probabilites that are calculated from the observed
symbol sequences at nominal and different anomalous con-
ditions. The gradual evolution of T with respect to the nomi-
nal condition represents the growth of small �parametric or
nonparametric� changes in the dynamical system. For pattern
identification, the symbol sequence derived from partitioning
the time series data under the nominal condition, generates
the transfer matrix T0 that, in turn, is used to obtain the
pattern vector p0, where p0 is the left eigenvector of T0

corresponding to the �unique� unit eigenvalue �Note that T is
an irreducible stochastic matrix�. Similarly, the pattern vec-
tors p1 ,p2 , . . .pm ,…. can be generated at subsequent anoma-
lous conditions based on the respective time series data.
�Note that the partitioning is fixed at the nominal condition�.
Since anomaly is defined as a deviation from the nominal
behavior, a scalar macroscopic variable � is defined such that

FIG. 1. Equivalence of the one-dimensional structure of Ising model and a
symbolic sequence with alphabet set �= �0,1�.
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�m = d�pm,p0� , �10�

where d�• , • � is a distance function �for example, the stan-
dard Euclidean norm�. In general, any analytical variable
derived from the statistical pattern vectors can serve as a
macroscopic parameter.

This statistical mechanical concept of pattern identifica-
tion has been validated on the experimental data collected
from a laboratory apparatus8 built upon an active nonlinear
electronic system that emulates the second-order nonautono-
mous, forced Duffing equation modeled as

d2y

dt2 + 

dy

dt
+ y�t� + y3�t� = A cos�t� . �11�

The dissipation parameter 
 is varied slowly with respect to
the response of the dynamical system; 
=0.11 is the nominal
condition and a change in the value of 
 is indicative of an
anomaly in the behavior of the dynamical system. Specifi-
cally, the objective is early detection of small changes in the
parameter 
 well before it manifests into a drastic phenom-
enon �e.g., chaos� in the system dynamics. With amplitude
A=22.0 and =5.0, a sharp change in the behavior is noticed
around 
=0.275, possibly due to bifurcation. The phase
plots, depicting this drastic change behavior, are shown in
Fig. 2.

Sets of time series data of the observed sensor variable y
were generated for different values of 
. The data set at the
nominal condition �i.e., 
=0.11� was used to create a parti-
tioning using the maximum entropy principle8 with ���=6
and is kept invariant for other data sets. As the dynamical
behavior of the system changes due to variations in 
, the
statistical characteristics of the symbol sequences are also
altered, leading to the evolution of transfer matrix T.
Anomaly is then captured using Eq. �10�. The results are
presented in Fig. 3 for r=1 and r=2. It is seen that results do
not improve significantly for r=2 indicating that r=1 is ad-
equate for pattern identification in this system. With 

increasing from 0.11, there is a gradual increase in the dis-
tortion measure � before the abrupt change in the vicinity of


=0.275. This indicates growth and detection of the evolu-
tionary changes much before a drastic change occurs in the
dynamical behavior.

The major conclusion of this paper is that thermody-
namic formalism is a useful tool for dynamic data-driven
pattern identification in dynamical systems. The underlying
concept is built upon the fundamental principles of symbolic
dynamics and statistical mechanics. The method of transfer
matrix analysis of spin systems is demonstrated for extrac-
tion of statistical information from symbol sequences that are
generated from the time series data of observed process vari-
ables. The concepts presented in this paper may also be ex-
tended to higher dimensions using multidimensional spin
system models for sensor data fusion and pattern identifica-
tion, which is a topic of future research.
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FIG. 2. �Color online� Phase plots in electronic circuit experiments.

FIG. 3. �Color online� Early detection of anomalies in electronic circuit
experiments.
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