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1. Introduction

Detection of moving targets (e.g., undersea autonomous vehi-
cles and weapon systems) in spatially-variable and uncertain en-
vironments is of prime importance in intelligence, surveillance and
reconnaissance (ISR) systems. However, the situational context
may prohibit placement of a single fixed long-term ISR system that
can be fine-tuned to maximize performance in the area of interest.
In such situations, distributed fields of passive sensor systems are
often called for, as they allow the coverage of relatively large areas
at a moderate cost (Culler, Estrin, & Srivastava, 2004; Li, Wong, Hu,
& Sayeed, 2002; Zhao, Shin, & Reisch, 2008). A distributed system of
small sensing nodes also provides a capacity for rapid deployment
(e.g., many small assets are usually easier to position than a few
large ones). In this context, the underwater target tracking must
meet the demands of rapid deployment and wide area coverage
for surveillance of moving targets in an uncertain environment.
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When a large field of passive sensors is deployed for target
tracking, the decision parameters of each sensor can be tuned
according to the situation awareness. In particular, the sensor
decision threshold D provides a cutoff level on the received energy
of the acoustic signal above which a target detection is declared.
Naturally, lower values of D provide a higher sensitivity to noise-
induced false alarms, where random spikes in the background
noise would cause a detection to be erroneously reported. In
contrast, larger values of D reduce the effective detection range of
the sensors, thus causing some targets to potentially move through
the surveillance region undetected. By carefully examining the
spatio-temporal sequence of reported detections across the entire
field of sensors, a much lower level of threshold D may be applied,
since random false alarms will rarely occur in patterns that are
coincident with expected target motion behavior. The usage of
moving target kinematics for multiple sensor detections is referred
to as the track-before-detect strategy, and is commonly adopted in
multi-sensor surveillance of moving targets.

Wettergren (2008) presented an application of track-before-
detect strategies to undersea distributed sensor networks. In de-
signing the deployment of a distributed passive sensor network
that employs this track-before-detect procedure, it is imperative
that the placement of sensors be commensurate with the expected
detection range. With limited knowledge of expected target direc-
tion and environmental conditions (e.g., sensor performance vari-
ations over space), it is a common practice to assume uniform
likelihoods of target motion direction and uniform environmental
conditions; this assumption leads to a naturally optimal configu-
ration of sensors in a circular ring with a small overlap between
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Fig. 1. Flow chart of the learning and adaptation phases.

coverage of individual sensors. Such a configuration would include
a nominal setting of the decision threshold that is identical for all
sensors. As situational information (e.g., from observation of a tar-
get as sensor time series) is gained from the system, it is desir-
able to adaptively improve the detection performance and reduce
the probability of false alarms through adjustment of the decision
threshold for the individual sensors in real time. From these per-
spectives, the decision thresholds at individual sensor nodes are
adaptable parameters for maintaining a specified level of track-
before-detect performance.

Given the a priori information: (i) the fixed sensor positions
and (ii) the statistical distributions of expected target trajectories,
the objective is to estimate track-dependent decision thresholds
in real time by making robust trade-offs between minimization
of the probability of false search (Pgs) and maximization of
the probability of successful search (Pss). The track-dependent
decision thresholds are adapted using the concept of formal
language-theoretic measure (Chattopadhyay & Ray, 2006) in the
setting of probabilistic finite state automata (PFSA). The PFSA are
constructed from symbol sequences generated from the observed
time series data at each sensor location (Ray, 2004; Subbu & Ray,
2008). The flow chart in Fig. 1 depicts the process of learning and
adaptation to illustrate how the formal language of the PFSA is
derived to select the decision threshold for a real track.

To establish the feasibility of PFSA-based tools for estimation
of sensor detection thresholds, simulation data sets have been
constructed corresponding to a notional undersea sensor field
surveillance scenario. These sensor data sets are generated on a
simulation test-bed of noisy time series outputs. The test-bed is
built on a typical sensor network that has been deployed to op-
timize its ability to track moving targets. The track-before-detect
strategy has been used in a nominal sensing environment with an
acceptable level of false search. As the target motion track is per-
turbed, the system performance degrades relative to the (a priori
determined) optimal condition, which can be adaptively improved.

This paper addresses real-time adaptation of decision thresh-
olds based on the time series information from sensor network
nodes. Major contributions of this paper are listed below.

e Robust trade-off between probabilities of false search (Pgs) and
successful search (Pss) with variations in the target motion and
uncertainties in the ambient/background noise distribution.

e Online correction of the offline estimate of decision threshold
based on time series of the current track.

e Algorithm validation on a simulated sensor-network test-bed
with time series from an ensemble of target tracks.

2. The track-before-detect strategy

This section formulates a track-before-detect strategy by devel-
oping a formal language theory-based optimization procedure for

estimation of decision thresholds for off-nominal undersea target
tracks as an alternative to conventional optimization methods. To
this end, the following assumptions are made based on the stan-
dard characteristics of ocean environment and undersea sonar sen-
sors (Urick, 1983):

e Deployment of passive omnidirectional sonar sensors in the
sensor network with a priori known locations;

e Inverse relationship (e.g., inverse square law for deep water)
of the transmission loss of the acoustic signal energy with
respect to the sensor’s distance from the target due to spherical
spreading;

e Signal contamination with multiplicative Gaussian noise;

e Uniform ambient/background noise level for all sensors.

As a target travels across the region, each sensor picks up a
noise-contaminated signal. A sensor that is closer to the target
receives a stronger (i.e., larger magnitude) signal as compared to a
sensor that is located farther away from the target. Each sensor in
the network is modeled with a simple sonar equation (Urick, 1983),
where the temporal positioning of signal energy is kinematically
matched to the location of a moving target with constant source
strength. The sonar equation represents the signal power excess
(SE) received on the sensor, which is modeled in decibel (power)
units as:

SE(t) = SL — NL — TL(x(t)) + DI (1)

where t is the time, SL is the level of the source (i.e., target) energy
emission, NL is the ambient noise level, TL is the (stochastically
varying) transmission loss as a function of the current target’s
position x(t), and DI is the directivity-induced noise compensation
that accounts for the physical performance of the signal reception
process. Such a performance model is typically used in naval
systems and has been experimentally validated (Porter, 1993).
The following model parameters have been used in the simulated
scenario of the sensor network, which are consistent with the
existing practice (Urick, 1983).

Target acoustic energy emission level SL = 100 db;
Ambient/background noise level NL = 70 db;
Standard deviation of uncertainty in TL = 2 db;
Parameter DI = 0 db due to sensor omnidirectionality.

The decision regarding the presence of a target is made
collaboratively by multiple sensors in accordance with the track-
before-detect paradigm. A target is said to be detected if, within a
specified interval of time, a number k of sensors detect a signal that
exceeds the specified decision threshold D; the length of the time
interval is chosen based on the size of the surveillance region and
the speed a typical target. In this study, k is chosen to be 3 following
the standard practice (Wettergren, 2008). Fig. 2 illustrates the
conceptual operation of the sensor field. The sensors are placed
in an approximately circular shape, as shown by ‘0’ markers. In
addition, the figure also shows an arbitrary track that a target may
follow.

Identification of an optimal decision threshold D involves
solution of a bi-objective optimization problem, where the two
(conflicting) objectives are:

(1) Maximization of probability of successful search (Pss).
(2) Minimization of probability of false search (Ps).

For a given target track, Pss as a function of D is evaluated by
Monte Carlo simulation. For a given threshold D, the simulation
of a target moving along a particular track is repeated 10,000
times. Then, Pss(D) is evaluated as the fraction of times the
target is detected for the given D. On the other hand, Pgs
is analytically evaluated (Wettergren, 2008) and depends on
the ambient noise characteristics. Both Pss(D) and Pgs(D) are
monotonically decreasing functions of D.
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Fig. 2. Sensor placement and a target track.
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Fig. 3. Effect of threshold on the objective J(«, D) for the track in Fig. 2.

It has been observed that the non-dominated points in the
plot of log(Pss) versus log(Prs) form a convex curve. Thus, a
single objective function J is constructed by a weighted linear
combination of the objective functions Pss and Pgs.

J(a, D) = alog(Pss(D)) — (1 — a) log(Prs(D)) (2)

where « is a scalar weight (0 < « < 1). For a given weight «, the
optimal detection threshold D" is obtained as:

D% () = arg max J(a, D). (3)

The family of curves in Fig. 3 show the effects of the chosen
decision threshold D on the objective function J(«, D) at different
values of the parameter « for the track in Fig. 2. In this context,
Fig. 4 is constructed to show the receiver operating characteristics
(ROC) curve (i.e., the Pareto front) (Poor, 1988) for the track in Fig. 2.
A point on the ROC curve provides the information on optimal
value of the pair (P, Pss) for the respective «. This information
is in agreement with the optimal decision threshold at the peak
point of the ROC curve in Fig. 3 corresponding to the given value
of a.

The above discussion evinces that, for a given «, the optimal
decision threshold D" in Eq. (3) is dependent on the current track
of the target. Although the information on the current track is
not known a priori, an ensemble of time series data generated
from the deployed sensor network is available. While the detection
thresholds for feasible target tracks are determined offline to
obtain an a priori expected value D, the problem at hand is to
identify the decision threshold D°?* online from the time series of
the current target track.
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Fig. 4. Receiver operating characteristics for the track in Fig. 2.

3. Review of underlying mathematical concepts

This section reviews the concepts of symbolic dynamic filtering
(SDF) (Ray, 2004; Subbu & Ray, 2008) and formal language
measure (Chattopadhyay & Ray, 2006) that are used to compute
decision thresholds for online surveillance of undersea targets
moving over a deployed sensor network.

3.1. Symbolic dynamic filtering (SDF)

The SDF generates state probability vectors from probabilistic
finite state automata (PFSA) to represent the evolving statistical
patterns of the dynamical system. The performance of SDF relative
to other classes of pattern recognition tools, such as Bayesian
Filters and Artificial Neural Networks, has been reported in
Rao, Ray, Sarkar, and Yasar (2009) from the perspectives of
performance (e.g., capability for early detection of anomalies)
and computational efficiency (e.g., execution time and memory
requirements).

The PFSA are constructed via analytic signal space partitioning
(ASSP) (Subbu & Ray, 2008) of the observed time series data for
symbol sequence generation, which is an essential ingredient of
SDF. A brief review of Hilbert-transform-based ASSP follows.

(1) Analytic Signal Space Partitioning: Hilbert transform of a real-
valued signal x(t) is obtained by the convolution:

~ 1
X(0) £ 210 = x(0) * (). 4)

The (complex-valued) analytic signal (Cohen, 1995) of the real-
valued signal x(t) is defined as:

() 2 x(t) +i%(t). (5)

Given a set of real-valued time series data, its Hilbert transform
yields a pseudo-phase plot that is constructed from the analytic
signal by a bijective mapping of the complex field onto R?,
i.e.,, by plotting the real and the imaginary parts of the complex-
valued signal on the abscissa and ordinate, respectively. The
time-dependent analytic signal in Eq. (5) is now represented as
a (one-dimensional) trajectory in the two-dimensional pseudo-
phase space (Subbu & Ray, 2008).

Let £ be a compact region in the pseudo-phase space, which
encloses the trajectory. The objective here is to partition & into
finitely many mutually exclusive and exhaustive segments, where
each segment is labeled with a symbol; and the resulting set of
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symbols is called an alphabet X'. The segments are determined by
magnitude and phase of the analytic signal and also from density
of data points in these segments. That is, if the magnitude and
phase of a data point lies within a segment or on its boundary,
then that data point is labeled with the corresponding symbol.
This symbol generation process is called analytic signal space
partitioning (ASSP) (Subbu & Ray, 2008).

One possible way of partitioning the region = is to divide the
magnitude and phase of the time-dependent analytic signal in
Eq. (5) into uniformly spaced segments between their minimum
and maximum values. This is called uniform partitioning. An alter-
native method, known as maximum entropy partitioning (Subbu &
Ray, 2008), maximizes the entropy of the partition, which imposes
a uniform probability distribution on the symbols. In this partition-
ing, parts of the state space with rich information are partitioned
into finer segments than those with sparse information. The ASSP
algorithm makes use of either one or both of these partitioning
methods.

The space of the complex-valued analytic signal is partitioned
in the angular and radial directions by either the uniform or the
maximum entropy partitioning technique (Subbu & Ray, 2008). If
| Xr| and | X4 | are the number of segments in the radial and angular
directions, respectively, then the total number of symbols in the
alphabet X is given by the product: | X| = | Xg|| X4|.

(2) Construction of PFSA: Given a symbol sequence derived from
ASSP of observed time series data, the concept of d-Markov
Machine (Ray, 2004) is adopted for construction of the PFSA with
the stochastic matrix IT of state transitions being irreducible
and acyclic (Bapat & Raghavan, 1997). (Note: The algorithm used
for construction of the PFSA could be non-unique because it
relies on the symbol sequence that is obtained by partitioning of
the time series data, where symbolization may not be achieved
through a generating partition (Ray, 2004).) The d-Markov machine
has a state-space structure where the states of the machine
are represented by blocks o0i0i10i47 . ..0irg—1 Of d consecutive
symbols from the alphabet X. Thus, with cardinality |X'| of the
alphabet and depth d of a symbol string of a state, the total
maximum number of states in the d-Markov machine is given by
| >|%. Thus, the state machine moves from one state to another
upon occurrence of a symbol. All symbol sequences that have the
same last d symbols represent the same state. The states of the
d-Markov machine at different time epochs should have identical
probability distribution in the time scale in which the dynamical
system is assumed to be (quasi)stationary.

3.2. Language measure for decision threshold computation

The PFSA constructed from a symbol sequence acts as alanguage
generator and is represented as G £ (Q, X, 8, IT), where Q is
the finite set of states with cardinality |Q| = n; X is the symbol
alphabet and the Kleene closure of X is denoted as X* that is the
set of all finite-length strings of symbols including the empty string
&, the (possibly partial) function § : Q x ¥ — Q represents state
transitions and §* : Q x X* — Q is an extension of §; and IT is
the symbol generation probability matrix, also called the morph
matrix, which specifies the probability of symbol generation
conditioned on individual states. The state transition matrix IT
is derived from IT and §. If IT is an irreducible matrix, then
p is the (1 x n) state probability vector which is the (sum-
normalized) left eigenvector of IT corresponding to its unique unity
eigenvalue (Bapat & Raghavan, 1997) and each element of p is
strictly positive.

A signed measure of the language (Chattopadhyay & Ray, 2006)
is obtained by assigning a weight to each of the states of the PFSA.

Definition 3.1. The state weight vector x : Q — R assigns a
signed real weight to each state g;,i = 1,2,...,n. The (1 x n)
state weight vector is denoted as:

X=1[x1x2 ... xn] where x; £ x(q)). (6)

Definition 3.2. The symbol generation probabilities are specified
as7 : X¥* x Q — [0, 1] suchthatVg; € Q, Yo, € X, Vs € X7,

(]) 7?[0/(, CI]] £ Ffjk € [0, 1]; Zk ﬁjk =1
(2) 7low, qj1 = 0if 8(g;, ox) is undefined; and 7T [e, gj] = 1;
(3) 7lows, i1 = T lok, q;]1 T[s, 8(gj, ox)].

The IT-matrix is defined as: ﬁjk =7(gj,01), g €Q, 04 € X.
Definition 3.3. The probabilistic state transition map of the PFSA

is defined as a function 7 : Q x Q — [0, 1] such that

0 iffcoeX:é(q,0)=q)=0

7w (qj, qx) = Z

o€X:5(q5, 0)=qk

7(o, gj) 2 mj otherwise. (7)

The IT-matrix is defined as IT £ [mj].

Definition 3.4. The language measure (Chattopadhyay & Ray,
2006) of a PFSA with respect to a given state weight vector yx is
defined as:

vO)=0[— Q-0 'x (8)

where the scalar parameter 8 € (0, 1) ensures invertibility of the
matrix on the right-hand side of Eq. (8) and implies a terminating
automaton. As # — 07, the terminating automaton converges to
a non-terminating automaton. The following propositions are re-
ported in Chattopadhyay and Ray (2006) along with their proofs.

Proposition 3.1. The limiting measure vector »(0) £ limy_, o+ v(6)
exists and is bounded from above such that ||[v(0)]lc < || Xllco-

Proposition 3.2. Given an irreducible and acyclic state transition
matrix IT, the measure vector in Eq. (8) reduces to: v(0) = v1, where
12 [11 ... 1]". Then, the scalar measure v is denoted as: v = p x',
where p is the (1 x n) state probability vector which is the (sum-
normalized) left eigenvector of II corresponding to its unique unity
eigenvalue (Bapat & Raghavan, 1997).

4. Adaptation of the decision threshold

While the optimum threshold D can be computed for a
known track, the goal here is online adaptation of the threshold D
for a priori unknown tracks, based on the in-situ sensor time series
data. The decision threshold is computed as a positive real measure
of the language of the PFSA generated from a symbol sequence
obtained by partitioning of the time series. The language measure
is derived in terms of the track-invariant state weight vector x of
the PFSA, as described below.

The time series data collected from sensors are partitioned
(ASSP) for conversion into a symbol sequence (Subbu & Ray, 2008).
Then, by following the procedure outlined in Section 3, a PFSA
is constructed from the concatenated symbol sequences (Ray,
2004) obtained from the relevant sensors. The PFSA has n states,
where n is a positive integer, and is characterized by an (n x n)
state transition matrix IT that is an irreducible acyclic stochastic
matrix (Bapat & Raghavan, 1997) by construction and p is the
associated state probability vector. Then, there exists a (1 x n) state
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weight vector y such that the (scalar) language measure of the PFSA
is obtained by Proposition 3.2 asv = p x'.

Let D be the expected value of the track-dependent decision
thresholds (as obtained using Eq. (3)) over the distribution of target
tracks. Let the state weight vector x be assigned such that the
residue (D; — D) of the detection threshold for the ith track is
identically equal to the language measure v; of the PFSA of the
corresponding track. Then, the detection threshold D; for the ith
track is obtained as:

Di—D=v= Di=pix" +D (9)

where p; is the state probability vector for the ith track.

The sets of track data generated from the simulation test bed
are divided into two mutually disjoint subsets—a training set and a
test set. The estimate x of the (track-invariant) state weight vector
X is computed from the ensemble of training data in terms of the
respective decision thresholds for individual tracks in the a priori
known training set.

Let £4qin be the number of tracks in training set. An (£yqin X 1)
matrix P is constructed from the training set as

P2[pip; ... Py, ] (10)

where the (1xn) state probability vectors p;,i € {1, 2, 3, ..., £uqin}
are respectively obtained from the £, tracks in the training set. If
the number of tracks in the training set is larger than the number
of states in the PSFA (i.e. {44, > n) and if there is sufficient vari-
ety in the set of training tracks such that the matrix P has the full
column rank n, then the (n x n) matrix (P'P) is invertible.

A threshold residue vector A consisting of the detection
threshold for each track in the training set is defined as:

A2[D;—DD,—D ... Dy, —DI" (11)

where the positive scalars D;, i € {1,2,3,..., £yqn}, are the
thresholds for the respective tracks in the training set and D is the
average detection threshold, which are computed a priori. Accord-
ingly, a measurement model of the ({44, X 1) threshold residue
vector A is formulated as:

A=Px +e¢ (12)

where the measurement error vector ¢ is additive zero-mean and
the (positive definite) error covariance matrix is R.

An estimate ¥ of the track-invariant (1 x n) vector x is
obtained by the (weighted) linear least square method based on
the information obtained from the training set. This task requires
orthogonal projection of the ({4, X 1) threshold residue vector A
onto the column space of P such that

T
%= ([PTR_]P]_]PTR_1A> . (13)
Note that  is an unbiased estimate of x and if the measurement
noise € in Eq. (12) is jointly Gaussian, then ¥ is also the minimum-
variance estimate of x.

If the information on the measurement noise covariance matrix
is not available, it is logical to assume (e.g., for identical sensors)

that the measurement error covariance matrix R ~ Iy, . x4+ 1D
that case, Eq. (13) reduces to

N T

X = ([PTIP’]_]IP’TA) : (14)

In the deployment phase, following Eq. (14), a probabilistic-
state-machine-based estimate of the threshold residue vector A
is obtained in terms of the estimate  of the track-invariant state
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Fig. 5. Set of test tracks across a sensor field.

weight vector as:

A=Py &D=p X +D, ic{1,2,..., Lis). (15)

Remark 4.1. The algorithm in Eq. (15) for estimation of decision
threshold is sufficiently fast for real-time execution on (limited
memory) sensor nodes. In the present form, the algorithm is
formulated based on the principle of linear least squares and is
data driven in the absence of additional pertinent information
such as a model of the underlying physical process and statistics
of the environmental noise. Should this information be available,
it is envisioned that combined model-based and data-driven
algorithms for (possibly nonlinear) estimation of the state weight
vector y could be constructed for real-time execution on individual
nodes in a sensor network.

Remark 4.2. The estimated state weight vector ¥ is a linear
functional in the space R" because ¥ : R" — R is a linear map,
as seen in Egs. (9) and (15). If the scalar parameter of decision
threshold D is replaced by a parameter vector of dimensionm < n,
then ¥ will become a linear transformation from R" onto R™. In a
more general case, a nonlinear transformation should be sought to
address this identification problem. That is, it might be necessary
to find a homeomorphism between the range space of ¥ and the
space of the decision threshold vector that replaces the scalar D.

5. Results and discussion

This section presents the results of the proposed method of
detection threshold estimation as applied to simulated data gen-
erated for a notional undersea sensor network. The nominal sen-
sor configuration follows an approximately circular ring pattern,
where the spacing between two neighboring sensors is set to be
approximately one half of the expected detection range. Such a
spacing provides multiple detection opportunities for targets that
transit along paths near the center of the circular ring, even under
somewhat noisy circumstances. The sensor characteristics, envi-
ronment and target models are the same as described in Section 2.

The ensemble of time series data is obtained from a set of 20
sensors in the given sensor network of the simulation test bed for
each of 21 different tracks. The optimal decision threshold for each
target track corresponds to the cost weight « and is track-specific
(see Eq. (3)). The objective here is to demonstrate the efficacy of
PFSA-based estimation of the detection threshold for individual
tracks. Data from 10 out of the 21 tracks have been used for training
and the parameter vector x is estimated according to Eq. (14). The
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Fig. 6. Comparison of optimal

performance is then tested on the remaining 11 tracks. These 11
tracks are numbered as depicted in Fig. 5.

Fig. 6(a) and (b) present comparisons of the optimal decision
threshold D' and the respective estimated values D at the 11 test
conditions for « = 0.95 and ¢ = 0.9 respectively, where track
numbers in both figures correspond to those in Fig. 5. These results
are based on the information (i.e., )X) generated in the training
phase and are obtained by partitioning the space of complex-
valued analytic signals (see Eq. (5)) with a symbol alphabet X
having cardinality |X| = 6, where |X¢| = 6 and |X4| = 1 (see
Section 3.1). A probabilistic finite state automaton (PFSA) is then
constructed from the generated symbol series. In this case, the PFSA
has 6 states (Ray, 2004); consequently, the vector x lies in RS.

In both Fig. 6(a) and (b), the mean of the estimation error is
negligibly small relative to the mean value of the optimal decision
threshold, which implies that the estimate is practically unbiased.
The rms value of the error (D" — D) is 0.3 db. If the threshold is
assumed to be D instead of D (i.e., no adaptation), the resulting rms
error increases to 1.6 db.

6. Summary, conclusions, and future research

This paper addresses online surveillance of undersea targets as a
real-time track-before-detect problem. As the target moves across
the sensor field, each sensor collects time series data; the sensors
that are closer to the path of the target capture stronger signals. A
track-before-detect algorithm has been formulated to estimate the
track-dependent decision threshold based on the ensemble of time
series data from the sensor field. The objective here is to obtain
an optimal trade-off between the probabilities of false search
and successful search as well as adaptation to online time series
data of the current track, which is robust relative to variations
in the target’s motion and uncertainties in the environmental
noise distribution. The proposed probabilistic finite state automata
(PFSA)-based algorithm is optimal in the sense of weighted linear
least squares. The algorithm has been tested with sensor data
from several tracks on a simulated sensor field. The results suggest
that the PFSA-based approach is feasible for online estimation of
decision thresholds, as needed for tracking of undersea targets.
However, the proposed track-before-detect algorithm must be
validated with rich experimental data to establish its efficacy for
online surveillance of undersea targets.

As an extension of PFSA-based decision-making, future research
is recommended in the following areas:

e Track-dependent estimation of decision threshold for dynamic
adaptation in a large sensor field: The optimal decision threshold

16 -| [ Threshold Estimated from Data
[ ] True Optimal Threshold

Detection Threshold (dB)

1 2 3 4 5 6 7 8 9 10 11
Track Number

(b) Scalar weight « = 0.90 in objective function J in Eq. (2).

decision threshold and estimation.

should be determined based on the local placement of sensors,
where the size of the local region depends on the target speed
and the time interval within which multiple sensors must
detect the target.

e Sensor placement for online tracking of target movements. There is
a need for development of a mathematically rigorous and com-
putationally inexpensive formal-language-theoretic algorithm
that will support the optimization objectives related to sen-
sor placement. Once calibrated with the existing optimization
algorithms, the proposed PFSA-based algorithm is expected to
provide solutions to the online sensor placement problem for
modest perturbations in the nominal target statistics and be lo-
cally executable on individual nodes of a sensor network in the
undersea environment.
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