IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 13, NO.5, MAY 2014

Self-Deployment in Mobile Sensor Networks

Yuan Song, Bing Wang, Member, IEEE, Zhijie Shi, Member, IEEE,
Krishna R. Pattipati, Fellow, IEEE, and Shalabh Gupta, Member, IEEE

Abstract—Even self-deployment is one of the best strategies to deploy mobile sensors when the region of interest is unknown and
manual deployment is infeasible. A widely used distributed algorithm, Lloyd‘s method, can achieve even self-deployment. It however
suffers from two critical issues when being used in mobile sensor networks. First, it does not consider limited sensor communication
range. Second, it does not optimize sensor movement distances, and hence can lead to excessive energy consumption, a primary
concern in sensor networks. This paper first formulates a locational optimization problem that achieves even deployment while it
takes account of energy consumption due to sensor movement, and then proposes two iterative algorithms. The first algorithm,
named Lloyd-«, reduces the movement step sizes in Lloyd‘s method. It saves traveling distance while maintaining the convergence
property. However, it leads to a larger number of deployment steps. The second algorithm, named Distributed Energy-Efficient self-
Deployment (DEED), reduces sensor traveling distances and requires a comparable number of deployment steps as that in Lloyd's
method. This paper further proposes an intuitive method to deal with limited sensor communication range that is applicable to all three
methods. Extensive simulation using NS-2 demonstrates that DEED leads to up to 54 percent less traveling distance and 46 percent

1035

Distributed Algorithms for Energy-Efficient Even

less energy consumption than Lloyd‘s method.

Index Terms—Mobile sensor networks, distributed algorithm, even self-deployment, Lloyd’s method, centroidal voronoi tessellation

<+

1 INTRODUCTION

ENSOR nodes must be deployed appropriately to success-

fully accomplish their sensing tasks. When the region of
interest is unknown or hostile (e.g., remote harsh fields,
disaster areas or toxic urban regions), manual deployment
is infeasible. In such cases, employing sensor mobility to
achieve self-deployment is a suitable approach [1], [2], [3].
Even self-deployment, i.e., deploying the sensors evenly in
the region, is one of the best known strategies in the absence
of a prior knowledge of the region. For instance, it provides
an optimal deployment for barrier coverage problem [4]. It
also implies good coverage in “spot—sensing” applications
[5], where each sensor node makes a measurement (e.g.,
temperature or humidity) at the precise location of the node.

According to Gersho’s conjecture [6], for a given area
and a set of sensors, the sensors are evenly distributed
when they form a Centroidal Voronoi Tessellation (CVT)
[7] (see more details on CVT in Section 2). Therefore, even
self-deployment, which requires the sensors to form a
CVT of the target area, differs from many existing studies
where the goal is to maximize the coverage of the area [1],
[2], [3]. For hostile or unknown fields, a centralized solu-
tion that pre-computes the final CVT and sensor final

e Y. Song, B. Wang and Z. Shi are with the Department of Computer
Science & Engineering, University of Connecticut, 371 Fairfield Way,
U-4155 Storrs, CT 06269.

E-mail: {yuan.song, bing, zshi}@engr.uconn.edu.

o K. R. Pattipatiand S. Gupta are with the Department of Electrical & Com-
puter Engineering, University of Connecticut, 371 Fairfield Way, U-4157
Storrs, CT 06269. E-mail: {krishna, shalabh.guptal@engr.uconn.edu.

Manuscript received 22 June 2012; revised 4 Mar. 2013; accepted 25 Mar.
2013. Date of publication 10 Apr. 2013; date of current version 15 May 2014.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.

Digital Object Identifier no. 10.1109/TMC.2013.46

destinations is often infeasible due to the difficulty of
gathering global knowledge and the lack of a centralized
entity. Distributed algorithms that require no global infor-
mation, but rather rely on sensors cooperation to form a
CVT, are more desirable.

A widely used distributed algorithm to construct CVTs is
Lloyd’s method [8]. It is a simple, iterative, and distributed
algorithm, derived from the locational optimization prob-
lem [9] that requires little a prior information on the region
of interest. To the best of our knowledge, it is also the only
distributed algorithm that has been applied to sensor net-
works for even deployment [10].

When the initial locations of all sensors and the bound-
aries of the area are available, each sensor can run Lloyd’s
method locally to compute the final CVT, and hence its final
destination, and then move to the destination directly. This
approach, however, may not always be feasible or desirable.
First, a sensor may not know the initial locations of the other
sensors. This is because sensors are often initially deployed
by airdropping or being projected into the area, thereby
making the initial sensor locations difficult to predict. Fur-
thermore, due to the uncontrolled initial deployment, sen-
sors may not form a connected network, making it difficult
for a sensor to communicate its location to the other sensors.
Second, the boundaries of the area may not be known
beforehand and the sensors may have to sense the bound-
aries while moving in the area. Third, even if each sensor
can pre-compute the final CVT, some mobile sensors may
fail while moving to their final destinations, leading to an
uneven deployment formed by the remaining sensors.

Due to the above reasons, in practice, a more robust and
scalable way is to apply Lloyd’s method iteratively while
fully employing its distributed nature. Specifically, in each

1536-1233 © 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

1036

iteration, sensors update their neighbor information, sense
unknown boundaries and compute their next destinations.
In this way, sensors will form an even deployment eventu-
ally. Furthermore, sensor failures can be detected immedi-
ately and reflected in the following computations when
sensors update the information from their neighbors.

Despite its scalability and robustness, Lloyd’s method
suffers from two critical issues when being used in mobile
sensor networks. First, it relies on accurate Voronoi neigh-
bor information (more details of Voronoi neighbors can be
found in Section 2), which is often not available in mobile
sensor networks since the sensors may be out of the com-
munication ranges of their Voronoi neighbors. Second,
iterative application of Lloyd’s method is not energy effi-
cient—it does not optimize sensor moving distances, and
therefore the sensors may travel longer distances than
necessary before reaching their desired destinations. Since
mechanical movement of sensors is one of the dominant
sources of energy consumption [11], they may waste a
large amount of energy.

This paper addresses the issue of energy-efficient mobile
sensor deployment to evenly cover a region of interest. The
proposed method improves the energy efficiency of the iter-
ative Lloyd’s method by defining two cost metrics of energy
consumption. The first one is the traveling distance of the
sensors and the other one is the number of deployment
steps, which roughly equals to the number of start/stop
operations of each sensor. The latter has been shown to be
another major energy consumption source during the
deployment process [11]. The limited communication
ranges of sensors are also considered.

The main contributions of the paper are as follows.

e The locational optimization problem is reformu-
lated by incorporating the traveling distances of
the sensors. The new formulation can achieve even
deployment while taking account of the energy
consumption.

e A new algorithm called Lloyd-« is proposed that
reduces the movement step sizes in Lloyd’s method
and saves traveling distance while maintaining the
convergence property.

e A new distributed algorithm, called Distributed
Energy-Efficient Self-Deployment (DEED) algorithm,
is proposed, that reduces the energy consumption by
saving sensor traveling distances while maintaining
a reasonable number of deployment steps.

e An intuitive method is proposed to deal with the
incomplete Voronoi neighbor information due to
limited communication ranges of sensors. Simula-
tion results show that this method helps the conver-
gence of both Lloyd’s method (the original Lloyd’s
method and Lloyd-«) and DEED algorithm.

e The performance of DEED algorithm is evaluated
using both analysis and simulations. Extensive sim-
ulation results indicate that, compared to Lloyd’s
method, it reduces the traveling distance by up to
54 percent, and reduces the energy consumption by
up to 46 percent.

The rest of the paper is organized as follows. Section 2

presents background information. Section 3 describes our

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL.13, NO.5, MAY 2014

new formulation of the locational optimization problem.
Section 4 describes DEED and its theoretical analysis.
Section 5 describes the method to deal with the incomplete
neighbor information in Voronoi cell computation. Section 6
presents performance evaluation. Finally, Section 7 con-
cludes the paper and presents future work.

2 BACKGROUND
2.1 Voronoi Diagram and CVT

Given a region and a set of sensors, a Voronoi diagram
divides the region into a set of Voronoi cells; each point in a
cell is associated with its closest sensor. Specifically, con-
sider a convex region, A, with a density function p(z). Let s;
denote the location of sensor 7. Let vector s = [s;]", denote
the location of all the sensors. The Voronoi cells, V(s) =

{Vi}iL,, generated by s are defined as
Vi=A{z e Allz = sil| < ||z —sll, Vi # i},

where V; is the Voronoi cell generated by the ith sensor. All
the sensors whose Voronoi cells are adjacent to V; are called
as the Voronoi neighbors of sensor i. Fig. 1a shows an exam-
ple of a Voronoi tessellation generated by 16 sensors.

Note that due to limited communication ranges of
sensors, the Voronoi neighbors of a sensor may not be its
real neighbors defined by its communication range. For
instance, in Fig. 1a, sensor 6 has six Voronoi neighbors.
Due to limited communication range, only three of them
(sensors 7, 8, and 5) are within the communication range
of sensor 6, while the other three (sensor 4, 12, 16) are
out of the communication range of sensor 6.

A CVT is a Voronoi tessellation where each generator of
its Voronoi cells coincides with the mass centroid of the
Voronoi cell. Fig. 1b shows a CVT corresponding to the Vor-
onoi tessellation in Fig. la. It is obtained using Lloyd’s
method (see Section 2.3). Many CVTs may be derived from
the initial deployment in Fig. 1a; Fig. 1b only illustrates one
of them.

2.2 Optimization Problem for Even Self-Deployment
Consider the CVT energy function [7], [12] defined as

N .
F(s) = Z;/rev,”x — si|*p(x) daz.

As shown in [7], [13], [14], the gradient of F (s) is

(1)

_OF
- 881'

VF(s) =2m;(s; — ¢i), (2)

where m; and ¢; are the mass and centroid of Voronoi cell
V;, respectively, and

zeV;

Jrey, Pl@)z d
G = "7 N>
fzevi ;O(.T)) d.T

where p(z) denotes the density at point z. In our problem,
plx) = 1.

SONG ET AL.: DISTRIBUTED ALGORITHMS FOR ENERGY-EFFICIENT EVEN SELF-DEPLOYMENT IN MOBILE SENSOR NETWORKS

1037

(a) Voronoi Cells

(b) CVT

Fig. 1. lllustration of Voronoi Cells and CVT with 16 sensors in a square area.

One can observe from (2) thata CVT corresponds to a crit-
ical point of F(s). The study in [7] shows that the necessary
condition for F(s) to be minimized is that s forms a CVT.
Recall that a CVT corresponds to an even deployment
according to Gersho’s conjecture [6]. Hence the sensor loca-
tions that minimize the CVT energy function F form an even
deployment. Therefore, the even-deployment problem can
be formulated as an unconstrained minimization problem as

s, = arg min F(s), (3)

where s, corresponds to a CVT of the target area. Note that
for a given set of sensors and target area, there may exist
multiple CVTs which correspond to the local minimizers
and the global minimizer of the CVT energy function [7].
Any CVT can form an even deployment.

To solve the even self-deployment problem defined in
(3), iterative algorithms are generally used. In these algo-
rithms, the locations of sensors are iteratively updated in
the direction of the negative gradient of the CVT energy
function, until the algorithm converges. If the algorithm is
distributed, then the sensors compute the moving direction
with the local information and move iteratively to minimize
the CVT energy function. In particular, let s, denote sensor
positions in the kth iteration. Let the movement step of N
sensors be defined by the vector p = [p;]",. Then, the move-
ment step p,, in the kth iteration is computed as,

p;, = argmin F(s; + p), (4)
p
and the sensor location vector is then updated as
Sk+1 = Sk + Py (5)
Due to the iterative nature of the method, the sensors are

required to be synchronized with each other in some fash-
ion. The algorithm converges to a CVT when p,, = 0.

2.3 Lloyd’s Method
A widely used algorithm to construct a CVT is Lloyd’s
method [7]. In Lloyd’s method, the sensors’ locations are

updated to the centroids of their Voronoi cells in each itera-
tion. Subsequently, the Voronoi cells are computed again
and the process is iterated until an approximate CVT of the
target area is generated.' Since sensors can use distributed
algorithms (e.g., those in [15]) to compute Voronoi cells and
Voronoi neighbors, the movement step can be computed
distributedly based on the neighbor information. To apply
it to mobile sensor deployment, we let each iteration consist
of two phases: i) neighbor discovery phase and ii) move-
ment phase. In the neighbor discovery phase, sensors
exchange their location information with their neighbors.
At the end of the neighbor discovery phase, sensors com-
pute their Lloyd movement step, referred to as Lloyd step, as

Di = Ci — S, Z:]-77]\7 (6)

Note that a sensor may not be within the communication
ranges of its Voronoi neighbors. The method described in
Section 5 can be used to deal with such cases.

3 ENERGY-EFFICIENT EVEN SELF-DEPLOYMENT

This section formulates a locational optimization problem
that achieves even deployment while taking into account
sensor traveling distances. Subsequently, it is shown that
Lloyd’s method provides an approximate solution to this
problem.

3.1 Problem Statement

In order to save energy consumption, it is essential to
reduce the traveling distances of sensors during self-deploy-
ment. In this regard, the iterative form in Eq. (4) is modified
by adding a penalty function for the lengths of sensors’
movement steps in each iteration. More specifically, the
desired energy-efficient movement step in the kth iteration
becomes

1. Note that in [10] Lloyd’s method can be an asynchronous
algorithm in which sensors compute movement step and change desti-
nation on the go. However, this requires the sensors to update Voronoi
cell continuously, which is not practical in sensor networks.

1038

1
Pr = argmpin <.7:(Sk + p) +§pTka)7

where the second term on the right hand side, 1 p’T;p, rep-
resents the penalty function and I'; is a diagonal matrix
with positive elements.

The above method can be regarded as a proximal mini-
mization algorithm [16]. When the algorithm converges, the
sensor location vector s converges to the same minimizer as
that of the energy function F(s), and hence forms a CVT.
The larger the elements of I'j, are, the smaller are the move-
ments steps and more distance saving is expected. How-
ever, as we will see, larger elements in I’ also result in a
larger number of deployment steps.

The introduction of the second order term p’I;p in
Eq. (7) requires that the iterative gradient method employs
the second order information of F(s) to characterize the
movement step p,.. This leads to the application of Newton's
method [17].%> To solve for p;, F(s; + p) is approximated
using Taylor’s theorem as

(8)

where H(s;) and g(s;) are the Hessian matrix and the gradi-
ent vector of F at s;, respectively. Substituting Eq. (8) into
Eq. (7) yields

- 1
Fsi+p) ~ Fsi) +8(s1) p+ 50" His)p,

by ~ argmin (ﬂsk) +a(s) D+ 50T (H(s) + mp) - 9)

Setting the derivative of the argument in the right hand side
of Eq. (9) to zero, we obtain the energy-efficient movement
step (EE-step) as

pr = —(H(si) + 1) 'g(se). (10)

Computing the EE-step via Eq. (10) requires the compu-
tation of the Hessian matrix and its inverse, which in gen-
eral needs global information of sensor locations. As will be
shown later, this computation can be done via cooperation
among sensors in a distributed manner in mobile sensor
networks.

3.2 Lloyd Step versus EE-Step

This section shows that the movement step in Lloyd’s
method is an approximation to the EE-step with a non-opti-
mal choice of I';. Furthermore, decreasing the step size of
Lloyd’s method leads to less traveling distance while main-
taining the convergence property.

Note that if the Hessian matrix H is a diagonal matrix, p;,
can be computed distributedly. Let H' denote a diagonal
matrix that only contains the diagonal elements of H.
Approximating H using H’ yields

Py~ —(H'(st) + i) 'g(sn). (11)

2. Newton’s method requires F to be at least C? [17]. A recent study
[12] proved C? smoothness of F in any convex and most non-convex
2D domains.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL.13, NO.5, MAY 2014

Following the results in [13], [14], the ith element in the
diagonal part of H is 2m; — 0;, where m, is the mass of the
Voronoi cell V; in the kth iteration, and 0; is a positive num-
ber (the exact form is described in [13], [14]). Setting the ith
diagonal element of I';, to 6;, the movement step p; of the ith
sensor in the kth iteration becomes

pi=—(2m;— 6, +0,) 'VF(s;), i=1,...,N. (12)
Substituting Eq. (2) into the above yields
pi = —(2mi)_12mi(si—ci) =¢—s, i=1,....,.N (13)

which is equivalent to the movement step in Lloyd’s
method as shown in Eq. (6). The above implies that the
movement step in Lloyd’s method is an approximation
of the EE-step—it is obtained by approximating the Hes-
sian matrix by keeping only the diagonal elements and
choosing a specific form of I';, (i.e., setting the ith diago-
nal element of I'; to 6;). This choice of I'; may not be
optimal. In fact, we can expect to save more distance by
increasing the diagonal elements of I'y. For example, if
we increase the ith diagonal elements in I'; to (2m; + 6;),
then the movement step becomes

—_

pi (Ci_si)a Z:1,,N (14)

"2
Equivalently,

(e —s), (15)

N | =

Py ~
which is half of the movement step in Lloyd’s method.

3.3 Lloyd-o Method

By choosing I';, appropriately, we can set the EE-step to an

arbitrary fraction, «, of Lloyd step. This method is referred

to as Lloyd-o method. The convergence of the method is

shown in Proposition 3.1.

Proposition 3.1. Suppose the movement step of N sensors in
Lloyd’s method is given by a vector p = [pl]f\il If the sensors
take a movement step p’ = [pﬂf\:l satisfying that p; = a;p;,

€(0,1), Vi e {1,...,N} in all iterations, k =1,2,...,
then the sequence of sensor positions sy, sa,. .. con-
verges to a CV'T of the target area.

Proof. Let 7 = {7,}.", denote an arbitrary tessellation of N
sensors in the area. We define

N
Fe1) =Y [o= slip)ds
i—1 JaeT;

Sky .- -

(16)

when 7 =V, we obtain energy function (7). With the
property of Voronoi tessellation, we have

F(s,V) < F(s,T), (17)
with strict inequality if 7 #V. Let c¢=[¢]Y, and
m = [m;]., denote the centroids and mass of V respec-
tively. Applying the parallel axis theorem [10], we can
rewrite F(s,7) as

SONG ET AL.: DISTRIBUTED ALGORITHMS FOR ENERGY-EFFICIENT EVEN SELF-DEPLOYMENT IN MOBILE SENSOR NETWORKS

N
f(s,T)=Z/ , lz = cill* o) da + millsi — ¢l (18)
= x€ly

Lets' = [s/]l, denote the new positions of sensors in the
beginning of next iteration, ie., s'=s+p’. Since
P =oip; = o;(c; — s),0; € (0,1), we have ||s; — clH =
(1 —ai)llsi —cll < |Isi — cil|- Together with equation (18),
we have

F(,T)< F(s,T), (19)

with strict inequality if s is not a CVT. Let V' denote the
Voronoi tessellation formed by s, from equations (17)
and (19), we have

F(V)< F(E, V) < F(s, V). (20)

The above equation shows that new positions of sensors

will decrease the energy function until sensors form a

CVT, which concludes the proof. a

Simulation results show that compared to the original
Lloyd’s method, Lloyd-a method using partial step sizes
saves traveling distance. However, it requires a larger
number of deployment steps. For example, if half of the
movement step of Lloyd’s method is used, ie., o =0.5,
then the number of deployment steps is approximately
doubled. Thus, the excessive energy consumed in start/
stop operations may cancel out the energy saved in the
traveling distance. This limits the application of this algo-
rithm only to the scenarios in which the cost of start/
stop operations is relatively low. The study in [12] shows
that incorporating more information from the second
order term of the CVT energy function, i.e., the Hessian
matrix, can achieve significantly less iterations before
convergence (corresponding to less deployment steps in
our context). This motivates us to propose a new distrib-
uted algorithm, as described in Section 4, that carefully
chooses I';, to reduce both the number of deployment
steps and sensor traveling distances.

4 DISTRIBUTED ENERGY EFFICIENT
SELF-DEPLOYMENT ALGORITHM

This section presents a new algorithm, named Distributed
Energy Efficient self-Deployment. It is an iterative algorithm
where in each iteration a sensor moves according to the
EE-step. It has two main objectives: i) saving the traveling
distances of the sensors and ii) reducing the number of
deployment steps. To achieve these two objectives, T
needs to be chosen carefully. In the following, we first
describe how to choose I';,, and then describe how to com-
pute EE-step in a distributed manner. In the end, we pres-
ent the workflow of DEED algorithm.

4.1 ChoiceofI’,

Recall that the EE-step is a movement step that minimizes
the CVT energy function F in Eq. (1) such that the EE-
step lies in the direction of decreasing F. This implies

1039

that the matrix H(sy) + I’y in Eq. (10) needs to be positive
definite [17]. Since the Hessian matrix H is sparse and is
generally not positive definite, the elements of I'j; should
be large enough to make the matrix H(s;) + I'; positive
definite. Reference [17] suggests that I'; can take the form
of ¢, I, where ¢, is a constant. Furthermore, if ¢, satisfies
that ¢, =0 if the Hessian is positive definite and ¢, =
—Amin(H) + 8 if the Hessian is positive indefinite, where
Amin(H) denotes the the minimum eigenvalue of H and
>0 is a small positive constant, then I'; = ¢,I is the
matrix with the minimum euclidean norm that makes
H(sy) +I'y, positive definite [17]. The study of [12] demon-
strates this choice of ¢ is effective in reducing the number
of iterations. This choice of ¢;,, however, may not be favor-
able in saving sensor traveling distances. Indeed in the
above, ¢, takes small values so that H(sy) + I'; is close to
H(sy) in order to reduce the number of iterations (i.e.,
deployment steps in our context) [12], [17], while to save
traveling distances, larger elements in I';; are preferable as
described in Section 3.2. To achieve the dual objectives of
reducing the number of deployment steps as well as sav-
ing sensor traveling distances, we set I';, = ¢,I and choose
the value of ¢, as follows.

Let a;; denote the element on the ith row and jth column
of the Hessian matrix H(s;) in the kth iteration. Then the
value of ¢, is chosen as

ek:maX{O,—m_in{a,;i —Z |ai;] }} +6, (21)
J
where § > 0 is a positive constant. If H_is defined as
H, = H(Sk) +Ty = H(Sk) + €1, (22)

then it can be shown that the choice of ¢; in Eq. (21) makes
the matrix H, positive definite as stated in the following
lemma.

Lemma 1. When setting e, as in Eq. (21), M\ (H) > 8, where
Amin (H=) denotes the minimum eigenvalue of H. . In addition,
the matrix H.. is positive definite.

Proof. We first prove the first statement. Recall Gerschgorin
Theorem [18]. Let matrix B € R"*" be symmetric with
eigenvalues Ay, ..., \,. Then

n
min A7 > min b” — E ‘b”| y
1<i<n 1<i<n .

J=Li#i

where b;; is the element of B on the ith row and jth
column.

Let a;; denotes the element of H on ith row and jth col-
umn. let u; =>7", . ; |a;|. Since Hy = H + €I, accord-
ing to Gerschgorin Theorem, we have

)\IIIiIl(H+) 2 1I$H<n {E + ai; — UJ}
<i<n
= e+ min {a; —u;
(lgig'n{ " 'l})7
i if minlgign{aﬁ — Uj} < 0, we have ¢ = fminlggn

{aii — Uj} + 8 and

1040

)\min(H+) 2 (Sa

ii. if Ininlg,-gn{ai,- — Uj} > 0, we have e = § and

)\Inin H > i it — Wy) > 8.
(Hy) > min {ai —uj} +

The second statement that H. is a positive definite

matrix follows directly from above and the symmetry

of H.]

Setting ¢, as in Eq. (21) has the following three advan-
tages compared to the choice of ¢ in [12]. First, to save sen-
sor traveling distance, the value of ¢; should not be too
small. When H is positive indefinite, €, in Eq. (21) is always
larger than — Ay, (H) (see the proof of Lemma 1), and hence
is more desirable in saving sensor traveling distance. Sec-
ond, the matrix H; and Ay (H) are difficult to evaluate in a
distributed manner. The widely adopted methods that com-
pute the minimum modification to make the Hessian matrix
positive definite (e.g., the modified Cholesky factorization
[17], [19]) cannot be employed since they use centralized
algorithms and have high complexities. In contrast, comput-
ing ¢ is easy to implement on distributed sensors. It needs
global consensus but requires much less overheads. Third,
as to be shown in Theorem 1, such choice of ¢, leads to the
convergence of the Jacobi method which is the method used
to distribute the computation.

Note that if a sensor is not within the communication
ranges of its Voronoi neighbors or the network is discon-
nected, the Hessian matrix H and ¢, may not be computed
correctly. The method described in Section 5 can be used to
deal with such cases.

The local convergence property of applying the EE-step
on a general function is shown by the following proposition.

Proposition 4.1. Let the function F(s;) satisfy the condition
that its Hessian matrix H is locally Lipschitz continuous
around an optimal point set s*. Furthermore, let the sequence
{si} and all elements of H be bounded in a finite domain.
Then if the starting point s is sufficiently close to the optimal
set s*, then the sequence of iterative points generated by the
solution of Eqs. (10) and (21) converges to s*, and the rate of
convergence is at least linear.

Before proving Proposition 4.1, we first prove a lemma.

Lemma 2. Define s* as the optimal point of function F(s) where
g(s*) = 0. Consider any functions F(s) that is twice differen-
tiable and whose Hessian matrix H(s) is locally Lipschitz con-
tinuous with Lipschitz constant L around optimal point set s*
within region ||s — s*|| < r. Do iterations as sj41 = sy, + Py,
where py, is computed by p, = —H ' (s;)g(sy) and H, =
H(sy) + €L Then, if the starting point s satisfies the condi-
tion ||sy — s*|| < r, the sequence of iterates sy, follows inequal-
ity below

| =~

lIsier =87l < o5 (s = s711* + 2enllsi — 7).

[\~

1

Proof. We denote g(s;) and g(s*) as g, and g* respectively.
From the definition of the iteration step and the optimal-
ity condition g* = 0, we have

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL.13, NO.5, MAY 2014

Sky1 — S

=s,+pp—s

=sp—s" = (H(si) + &) gy

(H(si) + D)

[(H(sp) + &) (35 —5") — (g — &)

According to Taylor’s theorem [17],

g, —g = /0 H(sp +t(s" —sg)) (s, — s)dt. (24)

Then choosing s so that ||s — s*|| < r, for kK > 0 we have
ICH (si) + exD) (s — 8%) — (g — &7l

‘ /Ol[H(Sk) + eI — H(sy, + t(s* — sp))] (s — S*)dtH

S/GW@@—H@+K§—MW+%Wm—ﬁW
0

1
s/&umwww+%m%—ﬂw
0

1
5 Lllsk = ' + exllsi — 5.

(25)
Let Apax(H) denote maximum eigenvalue of H.
([(H () + 6161)71 | =)‘maX((H(Sk) + EkI)il)
B 1
n Amin(H(sk’) + EkI) '
Since Lemma 1 tells us that Ap, (H) > 8, we have
|
[(H(sk) +eD) || < 5 (26)
By substituting in (23) and (25), we obtain
* L * 112 *
lIskrr =7l < 55 (s = 717 + 2exllsi = s7[1). - (27)
O

We now prove Proposition 4.1.

Proof. Let L denote the local Lipschitz constant of H. Since
all elements in H are bounded. Thus the value of ¢ com-
puted by (21) should be upper bounded. We denote this
upper bound as U.. Since the sequence {s;} are all
bounded in a finite domain, ||s; —s*|| should also be
upper bounded. We denote the upper bound as U,.
Then, following from Lemma 2, we have,

L
sk =711 < 55 (lls = s°)1° + 2¢llsi — 7))

< Ulsy — s,

SONG ET AL.: DISTRIBUTED ALGORITHMS FOR ENERGY-EFFICIENT EVEN SELF-DEPLOYMENT IN MOBILE SENSOR NETWORKS

where ﬁ:% Choosing sy so that |lsy —s*|| <
1/(2U), we can inductively deduce that the sequence
converges to s*, and the rate of convergence is linear. 0O

It is seen from the proof of Proposition 4.1 that the local
convergence rate depends on ¢;. A large ¢, will result in a
linear rate of convergence which leads to a larger number of
deployment steps, while a small ¢, results in nearly qua-
dratic rate of convergence which leads to a smaller number
of deployment steps.

4.2 Distributed Realization

This section describes how to compute the EE-steps distrib-
utively among sensors. From Eq. (10) and Eq. (22), it is
observed that the EE-step, p,, is the solution to a system of
linear equations

H p) = —g(st). (28)

Therefore, we can use distributed iterative methods such
as the Jacobi method [20], [21] or the GaBP method [22] to
obtain p,. In this paper, the Jacobi method is chosen since it
is simpler and more suitable for distributed sensor network
applications. The Jacobi method decomposes H into two
matrices, a diagonal matrix D and a remainder matrix R,
ie, H. =D+ R.Then Eq. (28) is rewritten as

(D+R)py, = —g(sk)-
Multiplying D" on both sides yields

(I+D '"R)p, = —D 'g(sp).
The Jacobi method uses an iterative approach. More specifi-
cally, let p,.(t) denote the solution obtained at the ¢th itera-
tion. Then,

Pi(t +1) = =D (Rpy(t) + g(si))- (29)

Note that D =D’ + ¢,I where T’ is the diagonal part of
the Hessian matrix H (s,). Thus, we get

pi(t+1) = —(D' + &) (Rpy(t) + g(sk). (30)

We observe two facts from the explicit formula of Hes-
sian H [13], [14]. First, H is a sparse matrix in the sense that
if two sensors are not Voronoi neighbors, then the elements
corresponding to these two sensors are zeros. Second, if the
location information of all the Voronoi neighbors is given,
then each sensor can compute all the elements of its corre-
sponding two rows” of H and thus D’ and R.

Therefore, if the Voronoi neighbors can share the
information of their movement steps computed in itera-
tion ¢ via communication and since g(s;) can be com-
puted distributively, the Jacobi iterative process in Eq.
(30) can be carried out in a distributed manner, though
it needs more communication overheads. The Jacobi iter-
ative process converges to the solution of Eq. (28) when

3. Note that since sensors move in two-dimensional space, there are
two rows corresponding to each sensor in the Hessian matrix.

1041

H, is strictly diagonally dominant [20]. The following
lemma states that this condition holds if the choice of ¢
follows Eq. (21);

Lemma 3. H, is a strictly diagonally dominant matrix if e is
computed as in Eq. (21).

Proof. According to equation (21),

o if H is strictly diagonally dominant itself, e = § and
H, = H + €l is still diagonally dominant since § > 0.
e if H is not strictly diagonally dominant, i.e., there
is at least one row k in the H satisfying aj;—
Zi \aki\ < 0, —mini{aii — Z]’ |a¢]~\ } > 0 and €=
—min;{a; — _; |a;;| } + 8. Itis trivial to show that for
any row k that satisfies ay, — > ; law| <0, e=
—mini{aii — Z]- |al~j| } +8 > ap — 27 |akl| since § >
0. Hence, for those rows, we have e + ay, > >, |a]
which makes H strictly diagonally dominant. ad

Combining Lemma 3 and the results in [20], we have the
following theorem regarding the convergence result of
Jacobi method.

Theorem 1. The Jacobi iterative process in Eq. (30) converges to
the solution of Eq. (28) from any initial step vector and the
approximate number of steps needed for convergence is

1
" In(Amax(DIR))

where A\ax (D~ R) is the largest eigenvalue of the matrix D' R.

4.2.1 Choice of the Initial Value p(0)

In order to reduce the number of iteration steps in the Jacobi
method and thus the communication energy consumption
of sensors, the initial value, p(0), needs to be chosen care-
fully to minimize the initial error. In our simulations in Sec-
tion 6, the initial value is set to be the movement step
computed using the Lloyd’s method according to Eq. (6). In
this way, sensors can compute the initial steps distributively
and the choice leads to a smaller number of iterations (~7)
in our simulations.

4.2.2 Propagating ¢ over the Network

Note that the Jacobi process requires ¢, to be known ahead.
Since the max operation in computing €, in Eq. (21) needs
global information, this requires extra packet exchanges to
propagate ¢, over the network which leads to excessive
energy consumption. To address this issue, observe that the
max operation is over Hessian rows. Thus, a simple method
is proposed in which ¢, propagates together with the Jacobi
iterations. In this method, a sensor does not need to know
the value of ¢, which is the global max before the Jacobi iter-
ation. Instead, in the first iteration of the Jacobi process, it
computes ¢ following Eq. (21) which is its local max, i.e.,
max value computed from its corresponding two rows.
Then starting from the first iteration, it always inserts the
current local max to the packet used in Jacobi process for
message exchange. Other sensors will update their local
max to the larger one received. The method requires the
sensors to send out their corresponding diagonal elements
in Hessian for their neighbors to update their steps with the
updated local max. In this fashion, the global max will

1042

spread over the network together with the Jacobi packets
without extra overhead. One should note that even when ¢,
is not propagated over all the network, the way ¢, is com-
puted and propagated does not violate the convergence
property of Jacobi process shown in Theorem 1.

Algorithm 1 One iteration of DEED algorithm at each
sensor
>Discovery phase starts
1: Discover neighbors and exchange locations with
neighbors
>Discovery phase ends
>Jacobi phase starts
2: Compute the corresponding rows of the Hessian
matrix and its Lloyd steps
3: for all computation sub-phases do
>Computation sub-phase starts
4: Delay a random period and exchange follow-
ing information with neighbors

e ¢ (local max)

« diagonal elements on its row

o Lloyd steps for the first computation sub-
phase or computed EE-steps at the end of
previous computation sub-phase

5: repeat Listen to the information from neigh-
bors

6: if neighbor information received then

7: Save received EE-steps of the neighbor

8: if a larger ¢ is received then

9: Update previous computed EE-steps
and received steps using received ¢ and diagonal
elements

10: Apply received ¢ in future computa-
tion

11: end if

12: end if

13: until information of all neighbors received or
the end of the computation sub-phase is reached

14: if fail to hear from any neighbor then

15: Skip following computation sub-phases
and set EE-steps to Lloyd steps

16: end if

17: Compute new EE-steps based on received EE-
steps of neighbors using equation (30)

>Computation sub-phase ends

18: end for
>Jacobi phase ends
>Movement phase starts

19: Move according to EE-steps computed in the Ja-

cobi phase
>Movement phase ends

4.3 Workflow of DEED Algorithm

In DEED algorithm, sensors move in iterations. The work-
flow of one iteration of the DEED algorithm at each sensor
is described in Algorithm 1. Each iteration starts with a

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL.13, NO.5, MAY 2014

neighbor discovery phase, followed by a Jacobi phase to
perform Jacobi computations and finally a movement
phase. The Jacobi phase is separated from neighbor discov-
ery phase as the Hessian information can only be known
after the neighbor discovery phase. The Jacobi phase is
further divided into a predefined number of smaller
“computation” sub-phases, each of which corresponds to
an iteration in the Jacobi iterative process. In each Jacobi
iteration, a new EE-step is computed using equation (30).
Then in the following movement phase, sensors take the
movement step as computed in the Jacobi phase. If a sensor
fails to hear from one of its neighbors in any computation
sub-phase, it simply takes a Lloyd movement step instead.

5 COMPUTING VORONOI CELLS WITH LIMITED
COMMUNICATION RANGE

The distributed Voronoi cell computation relies on the Vor-
onoi neighbor information [15]. However, in mobile sensor
networks, the communication ranges of sensors are limited.
A sensor may not be within the communication ranges of its
Voronoi neighbors. As a consequence, the distributed com-
putation of Voronoi cells may not be feasible. Fig. 2a shows
an example where S;, S5, S3, S4, S5 and S are six sensors.
The computed Voronoi cell of S; should be the polygon
ViV V3V, Vs. However, since S; is located outside the com-
munication range of S, and is not aware of the existence of
Sy, it computes its Voronoi cell as the polygon ViVaV5V5.
This incorrect computation of Voronoi cells may lead to
oscillatory movement in both Lloyd’s method and DEED;
thereby increases the traveling distance and prevents algo-
rithms from converging. For example, in Lloyd’s method,
we can see that S| moves more than needed towards S, and
may travel back after it hears from 5.

To address the issue of distributed Voronoi cell computa-
tion, an intuitive algorithm is proposed as follows. This
algorithm is applicable to both Lloyd’s method (the original
Lloyd’s method and Lloyd-«) and DEED. Let R denote the
communication ranges of sensors; a circle with radius R/2
and centered at a sensor is referred to as the “R/2-circle”
of the sensor. Clearly, if two sensors are out of the commu-
nication range of each other, then their R/2-circles do not
overlap. In the proposed method, each sensor uses the over-
lapped area of its computed Voronoi cell and its R/2-circle
as its Voronoi cell. For example, the resultant Voronoi cell
computed by S, in Fig. 2a is the polygon Vi15V3V]V! in
Fig. 2b. In this special case, the resultant Voronoi cell is very
close to the correct one. The intuition behind this algorithm
is that the resultant Voronoi cell will not contain points that
are in the Voronoi cells of other sensors. In this way, a sen-
sor with no neighbors will stay at its position, while a sensor
with incomplete neighbor information will take steps that
tend to form an even deployment within the connected
neighbors bounded by the R/2 circles of the sensor and its
neighbors. Since there is no overlapped area between the
R/2-circles of two sensors out of each other’s communica-
tion range, the Hessian matrix H and ¢, in Eq. (21) com-
puted for DEED algorithm will be locally correct within the
connected part of the network. As the sensors spread out
and learn about new neighbors gradually, the global even
deployment is finally achieved.

SONG ET AL.: DISTRIBUTED ALGORITHMS FOR ENERGY-EFFICIENT EVEN SELF-DEPLOYMENT IN MOBILE SENSOR NETWORKS

1043

(a) Problem caused by limited communication range

(b) Using R/2-circle to bound Voronoi cell

Fig. 2. An example showing incorrect Voronoi cell computation due to limited communication range of sensor R and the proposed algorithm to deal

with limited communication range.

To make sure that all sensors finally compute their cor-
rect Voronoi cells and form a global even deployment, it is
assumed that in the final even deployment, the R/2-circles
of all sensors cover the whole area. In practice, if the bound-
aries of the target area are known, then the required com-
munication range R of sensors can be computed a priori.
Even if the boundaries are unknown, a larger area that con-
tains the target area can be used to compute the value of R.
The transmission power of the sensor can be adjusted to get
the required R. In general, sensors may have different com-
munication ranges, the value of R here should be the mini-
mum communication range of all sensors. For a sensor with
anisotropic communication range, the value of R should be
chosen as the radius of the maximum circle within the com-
munication range of the sensor.

One should note that in [3], an approach where sensor
moves at most R/2 during movement is proposed to solve
the same problem. The method we proposed employs the
R/2-circle instead of limiting the step size is to approximate
the actual Voronoi cell so that the accuracy of Voronoi
related computation can be improved.

From the simulations it is observed that Lloyd method
and DEED algorithm do not converge in a large number of
deployment steps if the network formed by the initial
deployment of the sensors is disconnected. When the above
method is used to deal with the limited communication
range, then both algorithms converge quickly.

6 PERFORMANCE EVALUATION

This section compares the performance of Lloyd’s method
and DEED algorithm through simulation in NS-2 [23] (ver-
sion 2.35). The simulation settings are described first, fol-
lowed by the simulation results.

6.1 Simulation Settings

The DEED and Lloyd’s algorithms are implemented in two
agent models. The mobile node model is used with minor
modifications so that the agents can control the movement
of sensors directly. Sensors are synchronized by scheduling
the start time of their next step in every step.

The settings of the physical model follow IEEE 802.11p
[24], the MAC protocol is IEEE 802.11. The sensors use
omnidirectional antenna. The two ray ground model is
used as the propagation model that considers reflection
from the ground [25].

The computation of Voronoi partition is based on the
“qvoronoi” program from Qhull [26]. Modifications have
been made so that the program can compute Voronoi cells
in a bounded region. At the end of the neighbor discovery
phase, each sensor calls the program and uses its collected
neighbor information as the input to the program. Thus,
each sensor computes the Voronoi tessellation of the area
from its local point of view. Subsequently, each sensor
determines the intersection area of the computed Voronoi
cell and its R/2-circle, which is used as the Voronoi cell in
the computation of its movement step. To simplify the com-
putation, the R/2 circle of each sensor is approximated by a
regular hexagon.

6.1.1 Stopping Criteria

In both algorithms, a stopping criteria is defined for the
movement of sensors. If the distance between a sensor and
the centroid of its Voronoi cell (i.e., the movement step of
Lloyd’s method) is less than 1m, then the sensor stops
moving. Thus, when all sensors are close to the centroids
of their Voronoi cells, i.e., close to a CVT, then they stop
moving and the even deployment is completed. The rea-
son for choosing the threshold of 1 m as the stopping crite-
ria is two-fold. First, lowering the threshold further leads
to an increasing number of deployment steps with little
progress towards achieving a CVT. Second, based on the
results obtained from the animation tool—network anima-
tor (NAM) [23], it is observed that with this criteria, the
sensors visually form an even deployment. Furthermore,
the deployment quality is visually much better than using
alarger threshold, e.g., 2 m.

6.1.2 Energy Consumption

The energy consumption statistics is accumulated over
three sources—communication, movement, and start/stop
operations (roughly equals to the number of deployment

1044

“» - e
o .'e o o, - e ® o g o © 0 @ 0 o
o
e A %' oo 0 % 0o, 8 8 & & °
o
Wi o °° P T A KR
olé’, o %, ° ° 5 @
0 9%, , - ° s . ° CIEN
© ° s © L L
5. o ° o ° °
° o0 %y ° o o ° ey
L] 6% %o ° ° °
° ® ® o o
. s o o - o
. ° ° e ® o o o
LR} L L - °
o ° o ® ° o ¢ o ° o
o °
LR &8 o P 0o ® o o o e @
L
e
o .] ® s © o ® © o O ° ©
8 C. LA

(a) Initial Deployment

(b) Final Deployment

Fig. 3. lllustration of an initial and final deployment for the simulation sce-
nario with 100 sensors (results captured in NAM). The final deployment
is obtained using DEED.

steps). The unified energy consumption setting is used as
that in [3]. The moving distance and the number of deploy-
ment steps are normalized into message complexity. Thus,
the energy consumed by movement is presented by how
many packets can be transmitted with the same amount of
energy. As calculated from Robomote [11], moving a sensor
one meter consumes a similar amount of energy as transmit-
ting 300 messages. Thus, unless otherwise stated, the energy
consumed by movement is defined as 300 messages/meter.
The energy consumption in start/stop operations differs in
different systems. In the unified energy consumption result
as reported later, unless otherwise stated, the start/stop
operation is equivalent to movement by one meter, i.e., 300
messages/step.

6.2 Simulation Scenarios

The simulations consist of two scenarios. The first sce-
nario contains 100 mobile sensors that have to be evenly
deployed in a 500 m x 500 m area. In order to make
sure that the R/2-circles of sensors cover the whole area
when they form an even deployment, the communication
ranges of sensors are set to 160 m by adjusting the trans-
mission power of the sensors. The area is divided into
three stripes with the width of the middle stripe being
165 m. The sensors are randomly distributed in the other
two stripes. In this way, the initial deployment of the
sensors forms a disconnected network topology. The ini-
tial deployment and desired deployment of the scenario
are shown in Figs. 3a and 3b respectively, both of which
are captured in the network animator from one of the
obtained results.

The second scenario contains 25 mobile sensors that
needs to be evenly deployed in a 200 m x 200 m area. Simi-
larly, the communication ranges of sensors are set to 90 m.
As before, three stripe areas are used for initial deployment
and the width of the middle area is 95 m.

For each scenario, all algorithms use the same initial loca-
tions and run one by one. The simulation time is sufficiently
long (approximately the time of 200 deployment steps) to
make sure that all sensors achieve the steady state within
the simulation time. The process is repeated for 100 runs. In
each run, we collect three statistics: the traveling distance,
the number of deployment steps, and the energy consump-
tion of sensors. These statistics are collected when all sen-
sors stop.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL.13, NO.5, MAY 2014

Now we briefly discuss the choice of the lengths of the
phases for the scenario that contains 100 sensors (the
same setting is used for the scenario that contains 25 sen-
sors). In the neighbor discovery phase, the possible
packet loss is dealt with a simple mechanism. We let sen-
sors send packets of their location information twice and
wait a random time period before any transmission.
Since the transmission time of one packet under the sim-
ulation setting is less than 1 ms, the length of the neigh-
bor discovery phases is set to 10 s, which is enough for
all 100 sensors to complete all transmissions. The speed
of the sensor is set to be Im/s. The length of the move-
ment phase is set to 750 s so that all sensors can complete
the movement before next iteration starts. In DEED, the
Jacobi phase consists of three computation sub-phases.
We let sensors send one packet in each computation sub-
phase and set the length of the Jacobi phase to 10 s. We
choose multiple values for the positive constant § in (21),
and find that it has little impact on the simulation results.
The results reported below use § = 10.

6.3 Simulation Results

For both simulation scenarios, the results are generated
from 100 simulation runs. Both DEED and Lloyd’s method
converge quickly when the method described in Section 5 is
used to adjust Voronoi cells to deal with limited sensor com-
munication range (when not using this method, both meth-
ods fail to converge within the given simulation time). All
simulation results reported below use the adjusted Voronoi
cells.

For the sake of clarity, the simulation runs are indexed in
increasing order according to the average traveling distance
under DEED algorithm.

Figs. 4, 5 and 6 presents the results generated from Sce-
nario I with 100 sensors in a 500 m x 500 m area.

Fig. 4a plots the average traveling distance over all sen-
sors for each simulation run. The “Optimum” curve repre-
sents the average length of the optimal traveling path in
Lloyd’s method, i.e., the average linear distance between
the initial locations and the final destinations in Lloyd’s
method. It is to be noticed that the traveling distance under
DEED is closer to the optimum one. It results in 9-40 percent
less traveling distances as compared to Lloyd’s method for
all simulation runs with an average saving of 19 percent. In
comparison with Lloyd-0.8, the average distance saving
from DEED is 13 percent. Note that in some cases, DEED
results in even less traveling distances than the optimum
one. This is because the sensors converge to different desti-
nations under DEED (recall that the CVT energy function
can have multiple minima in the same area).

Fig. 4b plots the number of deployment steps for dif-
ferent algorithms. Observe that DEED requires similar
numbers of deployment steps when compared to Lloyd’s
method and the average difference is small.

The performance of Lloyd-o method was also mea-
sured with respect to different step sizes «. The results
are plotted in Fig. 5 and are obtained by averaging over
all simulation runs. Fig. 5a shows the average traveling
distance versus the Lloyd step fraction value «, while
Fig. 5b shows the total number of deployment steps. As

SONG ET AL.: DISTRIBUTED ALGORITHMS FOR ENERGY-EFFICIENT EVEN SELF-DEPLOYMENT IN MOBILE SENSOR NETWORKS

110

100

Travelling Distance (m)

Simulation Run

(2)

. | | : ¢ T T
Lloyd Travelling Distance 3 *

64 DEED Travelling Distance
| »w‘\\\
o 62r |
3}
- — 4 |
FR e 7
m ll|l||ll|||lllll|llll
S 563%™ |
2
© 54 - |
F

52 L |

50

02 03 04 05 06 07 08 0.9 1
Lloyd Step Fraction

(2)

Fig. 5. Comparison of Lloyd-« methods with different step fractions «.

expected, more distance savings are obtained for smaller
step sizes. Lloyd-« algorithm requires approximately 1/«
times the number of steps than that of Lloyd’s method.
Among the tested Lloyd algorithms, Lloyd-0.8 is consid-
ered the most energy-efficient because it has the highest
ratio of the distance saving over the increment in the
number of deployment steps. For comparison, the aver-
age traveling distance and the number of deployment
steps for DEED are also shown in Figs. 5a and 5b, respec-
tively. The results indicate that DEED outperforms

250
200 |

150 [yt

100 1

Message Complexity

100
Simulation Run

(2)

1045

75
70 |
65 |
60 |
55 |
50 |
45

40
35

H-

Number of Deployment Steps

0 20 40 60 80
Simulation Run

(b)

Fig. 4. Average travelling distance and number of deployment steps over 100 simulation runs for the scenario with 100 sensors.

180 ‘
*

160 | =,

Lloj/d Debloymént Stép o
DEED Deployment Step ,

140 | ", 1
120 | k

100 | ,]

80 | |
»*
60 r

a0 —

hy,
"y,
g,
y,
M,
o,
"

Number of Deployment Steps

20 e ———
02 03 04 05 06 07 08 0.9

Lloyd Step Fraction
(b)

-

Lloyd’s method and all its variants in both the average
traveling distance and the number of deployment steps.
Fig. 6a plots the message complexity and Fig. 6b plots the
average unified energy consumption over all sensors. As
seen from Figs. 6a and 6b, DEED requires more message
exchange compared to Lloyd’s method and Lloyd-0.8
method due to the additional Jacobi phase; however, it still
saves overall energy. This is due to the less traveling dis-
tance under DEED. Lloyd-0.8 algorithm consumes more
energy on average than Lloyd’s method due to larger

50000
45000
40000
35000
30000 |

25000 g

Unified Energy Consumption

20000

0 20 40 60 80
Simulation Run

(b)

100

Fig. 6. Average message complexity and unified energy consumptions over 100 simulation runs for the scenario with 100 sensors (represented using

the number of messages that can be transmitted).

1046

Lloyd - 300 msg/meter -
70000 DEED - 300 msg/meter -
Lloyd 0.8 - 300 msg/meter
Lloyd - 600 msg/meter - El-
60000 DEED - 600 msg/meter

Lloyd 0.8 - 600 msg/meter -

Unified Energy Consumption

100 150 200 250

0 50
Energy consumption per step (msg/step)

300

Fig. 7. Unified energy consumption under different energy consumption
models.

number of deployment steps. When compared to Lloyd’s
method, the energy saving from DEED is up to 28 percent
with an average saving of 13 percent. When compared to
Lloyd-0.8, the average energy saving is 15 percent.

All the results presented so far assume that the energy
consumption for moving a sensor one meter and the
energy consumption per deployment step are both equiv-
alent to the energy consumption of sending 300 messages.
We next vary the energy consumption model as follows.
The energy consumption for moving a sensor one meter
is set to equivalence of sending either 300 or 600 mes-
sages; the energy consumption per deployment step is
varied to be the equivalence of sending zero (zero energy
consumption per deployment step) to 300 messages. The
results are shown in Fig. 7. Clearly, DEED saves energy
under all the settings. It is to be noticed that while Lloyd-
0.8 consumes more energy than Lloyd’s method under
the default simulation settings, in other settings where
the energy consumption of start/stop operation is rela-
tively low, Lloyd-0.8 requires less energy consumption on
average due to the distance savings when compared to
Lloyd’s method.

The results obtained in the second scenario with 25 sen-
sors in 200 m x 200 m area are similar to those in the first
scenario. We briefly summarize the result here. DEED algo-
rithm performs the best overall. When compared to Lloyd’s
method, it saves up to 54 percent traveling distance with an
average saving of 28 percent. The energy saving is up to
46 percent with an average saving of 18 percent.

We also explore different initial deployment settings,
where sensors start from four corners of the target area, e.g.,
in the 500 m x 500 m target area, initial locations of sensors
are set to be in four 100 m x 100 m squares located in the
four corners of the area respectively. The obtained results
are similar and thus are omitted in the interest of space.

7 CONCLUSION AND FUTURE WORK

This paper studied the problem of energy-efficient even
self-deployment in mobile sensor networks. In order to
address the issue of energy-efficient deployment, which is
still a challenge in the widely used Lloyd’s method, a new
algorithm, DEED algorithm, is proposed. Simulation results
demonstrate that DEED performs well in different scenar-
ios. Specifically, it leads to up to 54 percent less traveling
distance and 46 percent less energy consumption than

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL.13, NO.5, MAY 2014

Lloyd’s method. As future work, we will explore even self-
deployment of sensors in areas with obstacles.

ACKNOWLEDGMENTS

This work was partially supported by US National Science
Foundation CAREER award 0746841 and Qualtech Systems
Incorporated. The authors would like to thank the anony-
mous reviewers for their insightful comments.

REFERENCES

[1] N.Heo and P K. Varshney, “Energy-Efficient Deployment of Intel-
ligent Mobile Sensor Networks,” IEEE Trans. Systems, Man and
Cybernetics, vol. 35, no. 1, pp. 78-92, Jan. 2005.

Y. Zou and K. Chakrabarty, “Sensor Deployment and Target Local-
ization Based on Virtual Forces,” Proc. IEEE INFOCOM, pp. 1293-
1303, July 2003.

G. Wang, G. Cao, and T.F.L. Porta, “Movement-Assisted Sensor
Deployment,” IEEE Trans. Mobile Computing, vol. 5, no. 6, pp. 640-
652, June 2006.

B.L.A. Saipulla, C. Westphal, and J. Wang, “Barrier Coverage of
Line-Based Deployed Wireless Sensor Networks,” Proc. IEEE
INFOCOM, pp. 127-135, 2009.

X. Chu and H. Sethu, “A New Distributed Algorithm for Even
Coverage and Improved Lifetime in a Sensor Network,” Proc.
IEEE INFOCOM, pp. 361-369, June 2009.

A. Gersho, “Asymptotically Optimal Block Quantization,” IEEE
Trans. Information Theory, vol. 25, no. 4, pp. 373-380, July 1979.
V.F.Q. Du and M. Gunzburger, “Centroidal Voronoi Tessellations:
Applications and Algorithms,” SIAM Rev., vol. 41, no. 4, pp. 637-
676,1999.

S. Lloyd, “Least Squares Quantization in PCM,” IEEE Trans. Infor-
mation Theory, vol. 28, no. 2, pp. 129-137, Mar. 1982.

K.S.A. Okabe, B. Boots, and S.N. Chiu, Spatial Tessellations: Con-
cepts and Applications of Voronoi Diagrams, second ed. John Wiley &
Sons, 2000.

J. Cortés, S. Martinez, T. Karatas, and B. Francesco, “Coverage
Control for Mobile Sensing Networks,” IEEE Trans. Robotics and
Automation, vol. 20, no. 2, pp. 243-255, Apr. 2004.

G.T. Sibley, M.H. Rahimi, and G.S. Sukhatme, “Robomote: A
Tiny Mobile Robot Platform for Large-Scale Ad-Hoc Sensor
Networks,” Proc. IEEE Int’l Conf. Robotics and Automation (ICRA),
pp. 1143-1148, May 2002.

Y. Liu, W. Wang, B. Lévy, F. Sun, D.-M. Yan, L. Lu, and C. Yang,
“On Centroidal Voronoi Tessellation—Energy Smoothness and
Fast Computation,” ACM Trans. Graphics, vol. 28, no. 4, article 101
Aug. 2009.

M. Iri, K. Murota, and T. Ohya, “A Fast Voronoi-Diagram Algo-
rithm with Applications to Geographical Optimization Prob-
lems,” Proc. IFIP Conf. System Modelling and Optimzation, pp. 273-
288, 1984.

Y. Asami, “A Note on the Derivation of the First and Sec-
ond Derivatives of Objective Functions in Geographical Opti-
mization Problems,” |. Faculty of Eng., vol. 61, no. 1, pp. 1-
13, 1991.

B.A. Bash and P.J. Desnoyers, “Exact Distributed Voronoi Cell
Computation in Sensor Networks,” Proc. Sixth Int’l Smp. Informa-
tion Processing in Sensor Networks (IPSN), 2007.

R.T. Rockafellar, “Monotone Operators and the Proximal Point
Algorithm,” SIAM . Control and Optimization, vol. 14, pp. 877-898,
1976.

J. Nocedal and S. Wright,
Springer, 2006.

R.B.S.J.E. Dennis Jr., Numerical Methods for Unconstrained Optimi-
zation and Nonlinear Equations. Prentice-Hall, 1983.

R. Schnabel and E. Eskow, “A Revised Modified Cholesky Factori-
zation Algorithm,” SIAM]. Optimization, vol. 9, no. 4, pp. 1135-
1148, 1999.

D.M. Young and L.A. Hageman, Applied Iterative Methods. Aca-
demic Press, 1981.

A.Jadbabaie, A. Ozdaglar, and M. Zargham, “A Distributed New-
ton Method for Network Optimization,” Proc. 48th IEEE Conf.
Decision and Control, pp. 2736-2741, Dec. 2009.

(2]

(3]

(4]

(5]

(6]
(71

(8]
(%]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17] Numerical Optimization, second ed.
[18]

[19]

[20]

[21]

SONG ET AL.: DISTRIBUTED ALGORITHMS FOR ENERGY-EFFICIENT EVEN SELF-DEPLOYMENT IN MOBILE SENSOR NETWORKS

[22] O. Shental, P.H. Siegel,] K. Wolf, D. Bickson, and D. Dolev,
“Gaussian Belief Propagation Solver for Systems of Linear Equa-
tions,” Proc. IEEE Int’l Symp. Information Theory, pp. 1863-1867,
Aug. 2008.

The Network Simulator Ns-2, http://www.isi.edu/nsnam/ns/,
2014.

“IEEE P802.11p/D2.01, Draft Amendment for Wireless Access in
Vehicular Environments (WAVE),” Feb. 2007.

T.S. Rappaport, Wireless Communications, Principles and Practice.
Prentice Hall PTR, Jan. 1996.

[26] Qhull, http://www.qhull.org, 2014.

[23]
[24]

(25]

Yuan Song received the BE and ME degrees
both in telecommunications engineering from the
Xidian University, in 2005 and 2008, respectively.
He is currently working toward the PhD degree in
the Department of Computer Science and Engi-
neering, University of Connecticut. His research
interests include wireless communication, net-
work security and mobile computing.

Bing Wang received the BS degree in computer
science from the Nanjing University of Science &
Technology, China, in 1994, and the MS degree
in computer engineering from the Institute of
Computing Technology, Chinese Academy of
Sciences in 1997. She then received the MS
degrees in computer science and applied mathe-
matics, and the PhD degree in computer science
from the University of Massachusetts, Amherst,
in 2000, 2004, and 2005, respectively. She is cur-
rently an associate professor of computer sci-
ence and engineering at the University of Connecticut. Her research
interests include computer networks, multimedia, and distributed sys-
tems. She received the US National Science Foundation (NSF)
CAREER award in 2008. She is a member of the IEEE.

Zhijie Shi received the BS and MS degrees from
Tsinghua University, China, in 1992 and 1996,
respectively and the PhD degree from Princeton
University in 2004. He is currently an associate
professor of computer science and engineering
at the University of Connecticut. He received the
US National Science Foundation (NSF) CAREER
award in 2006. His current research interests
include underwater sensor networks, sensor net-
work security, hardware mechanisms for secure
and reliable computing, side channel attacks and
countermeasures, and primitives for cipher designs. He is a member of
the IEEE and the ACM.

b 4

1047

Krishna R. Pattipati received the BTech degree
in electrical engineering with highest honors from
the Indian Institute of Technology, Kharagpur, in
1975, and the MS and PhD degrees in systems
engineering from the University of Connecticut
(UCONN), Storrs, in 1977 and 1980, respec-
tively. He was with ALPHATECH, Inc., Burling-
ton, Massachusetts from 1980 to 1986. He has
been with the University of Connecticut, where
he is currently the UTC Professor in Systems
Engineering. His current research activities are in
the areas of agile planning, diagnosis and prognosis techniques for
cyber-physical systems, multi-object tracking, and combinatorial optimi-
zation. A common theme among these applications is that they are char-
acterized by a great deal of uncertainty, complexity, and computational
intractability. He is a cofounder of Qualtech Systems, Inc., a firm special-
izing in advanced integrated diagnostics software tools (TEAMS,
TEAMS-RT, TEAMS-RDS, TEAMATE), and serves on the board of
Aptima, Inc. He was selected by the IEEE Systems, Man, and Cybernet-
ics (SMC) Society as the Outstanding Young Engineer of 1984, and
received the Centennial Key to the Future award. He has served as the
editor-in-chief of the IEEE Trans. Systems, Man, and Cybernetics—Part
B from 1998 to 2001, vice-president for Technical Activities of the IEEE
SMC Society from 1998 to 1999, and as vice-president for Conferences
and Meetings of the IEEE SMC Society from 2000 to 2001. He was co-
recipient of the Andrew P. Sage Award for the Best SMC Transactions
Paper for 1999, the Barry Carlton Award for the Best AES Transactions
Paper for 2000, the 2002 and 2008 NASA Space Act Awards for “A
Comprehensive Toolset for Model-based Health Monitoring and Diag-
nosis,” and “Real-time Update of Fault-Test Dependencies of Dynamic
Systems: A Comprehensive Toolset for Model-Based Health Monitoring
and Diagnostics,” and the 2003 AAUP Research Excellence Award at
UCONN. He also won the best technical paper awards at the 1985,
1990, 1994, 2002, 2004, 2005, and 2011 IEEE AUTOTEST Conferen-
ces, and at the 1997 and 2004 Command and Control Conference. He is
an elected fellow of the IEEE and of the Connecticut Academy of Sci-
ence and Engineering.

Shalabh Gupta (M'04) received the MS
degrees in mechanical and electrical engineer-
ing and the PhD degree in mechanical engineer-
ing in 2006 from Pennsylvania State University
(Penn State), University Park. He is currently an
assistant professor in the Department of Electri-
cal and Computer Engineering at the University
of Connecticut. His research efforts are directed
toward opening new mathematical fields of data
understanding, pattern discovery and adaptive
decision-making, using multidisciplinary con-
cepts derived from languages and automata theory, symbolic dynam-
ics, and statistical mechanics. His research interests include the
science of autonomy, swarm robotics, intelligent systems, machine
learning, network science, and fault diagnosis & prognosis in complex
systems. He is a member of the American Society of Mechanical
Engineers (ASME) and the Institute of Electrical and Electronics Engi-
neers (IEEE).

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

