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1. ABSTRACT

Recently it has been shown that structural vibrations are an efficient means to repair stiction failed microcan-
tilever beams. Experiments and analysis have identified excitation parameters (amplitude and frequency) that
successfully initiated the debonding process between the microcantilever and the substrate. That analysis could
not describe what happened after the debonding process was initiated. For example it could not predict if the
beam would transition from a s-shaped to an arc-shaped configuration or even be repaired to a free-standing
beam. The current research examines the post-initiation behavior of stiction failed microcantilever beams. A
new-coupled fracture/vibration model is formulated and used to track the evolution of the repair in order to
determine the extent of repair under various conditions. This model successfully explains phenomenological ob-
servations made during the experiments regarding the repair process being dependent on direction of frequency
sweeps, complete and partial repair, and monitors the degree of repair no repair, partial repair or complete
repair along with releases time associated with such repairs.

2. INTRODUCTION

Recent studies conducted on microelectromechanical systems (MEMS) have suggested that sticking failure of
individual components within a device is one of the most common and unavoidable reliability issue facing the
industry.1, 2 This particular failure mechanism, commonly referred to as stiction, is a significant roadblock
preventing the widespread use of MEMS in commercial applications. Stiction failures, which are typically driven
by surface forces, can be broken down into two categories. The first is fabrication failures. In this case, sticking
contact is initiated as material is etched away and the device is released . The forces responsible for these failures
include (but are not limited to) capillary forces, van der Waals forces, and electrostatic forces.3–5 The second
type of failure occurs after the device is manufactured and has been put into use. These operational failures
are referred to as in-use stiction. The mechanisms driving these failures are more diverse; dynamic effects may
cause components to come into contact, where various forces may lead to adhesive contact. These include the
surface forces listed previously, as well as Casimir forces, and Coulomb forces.1, 6

Research efforts aimed at improving device reliability at the fabrication stages have taken various tacks. These
include introducing novel materials, thin film coatings, smart design changes, and post-fabrication manipulation.
For example, during the fabrication of silicon molds for polymer optics, teflon-like material is used as a coating
using a DRIE (deep reactive ion etching) process. This has been shown to reduce the stiction arising from
chemical etching with KOH and IPA.7 Diamond like carbon coatings have been used to reduce the stiction
properties of microsurfaces.8 And hydrogen elimination process have been developed for the removal of water
molecules after the washing process.9 Shortly after fabrication (and before being put into operational use), laser
pulse heating has been used to repair stiction failed micro-cantilevers.10–12 This process directs a laser pulse
at the failed component. The rapid expansion of the heated component produces thermal strains and causes
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Figure 1: A schematic of a micro-cantilever stuck to a substrate. Its unstuck length is s. A periodic harmonic
load is applied over a small portion of the beam, in an attempt to unstick it.

relative slip between the two mated surfaces, driving decohesion. Although this approach is very attractive, it is
still inhibited by the fact the internal lattice heating can damage the component. This is particularly worrisome
for those made out of polymeric and cellular materials, which appear in newer types of MEMS devices. Laser
induced stress waves have also been considered, as a means to separate stiction failed MEMS structures.13, 14 The
latter two methods, while showing promise, require a good deal of hardware, set-up space, as well as easy access
to the failed component. As a result, they are reasonable methods for fabrication failures but are considerably
less attractive for repairing in-use devices.

For in-use stiction, research has focused on prevention - and not as much on repair. For example, consider RF
MEMS switches. Common in-use failures modes include a trapped-charge mechanism15 and break down of the
dielectric16, 17; material solutions for such problems have dominated. Self-assembled monolayers (SAM)18 have
significantly reduced the release and in-use stiction, as compared to plasma deposited fluorocarbons. Designers
have also proposed avoiding stiction by redesigns: by limiting the length of free standing cantilever beams stiction
may be avoided during the operation of certain actuators.6 Additional features, such as sidewall spacers and
bumps, may be etched into the device and help reduce the contact area of the neighboring surfaces, thereby
reducing the potential for stiction.19 These design approaches have met with some success, though they limit
design flexibility.

Recently, it has been shown that structural vibrations may be used as an effective alternative for the repair
of stiction failed components.20 The benefit to this approach is that electrical actuation pads may be built
into the substrate of a MEMS chip and used to deliver a periodic electrical potential, driving the structural
vibrations. In short, the built-in functionality of the chip may be used to used to effect the desired repair. The
physical process behind this approach can be seen schematically in Figure 1. This shows a microcantilever stuck
to a substrate. At the right end of the unstuck section, x = s, the beam and the substrate merge and form a
singularity, which is geometrically similar to a crack tip. As the unstuck portion of the beam is driven, lateral
vibrations are induced and the crack may or may not advance; the onset of crack propagation (also referred
to as debonding or peeling, in this physical context) and its continued growth may be described via dynamic
fracture mechanics. The preliminary work on this approach considered a beam with a fixed unstuck length, i.e.
s = constant. Parameter combinations of the forcing amplitude and frequency (F, Ω) that initiated peeling were
then obtained.20 The present study differs in several ways - but the most dramatic difference is that the unstuck
length is now a function of time, s = s(t). As such, the evolution of the stiction repair process may be described.
As an aside, it may be noted that because the domain of the problem is restricted to the unstuck portion of the
beam (which changes with time), this problem constitutes a moving boundary problem.

The model developed here uses assumed modes (for spatial discretization) along with Lagrange’s equations to
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describe the lateral deformation of the unstuck portion, w(x, t), and the growth of the unstuck portion, s(t). This
formulation incorporates inertial effects into Griffith’s criterion for mode I fracture.22, 23 Finally, the limitations
of this model should be clearly stated. This model may be used to examine growth of the unstuck region (i.e.,
crack growth). In other words, this model remains valid only for an advancing crack, ṡ ≥ 0. The complex contact
(and possibly re-adhesion) mechanics of crack closure are not considered here. A simple model for static crack
closure has been proposed elsewhere.24, 25

3. ANALYTICAL MODEL

The system under consideration is the s-shaped, stiction failed micro-cantilever, shown in “Fig. 1.” The model
will describe behavior only in the unstuck portion of the beam, x ∈ [0, s]. The beam is a homogeneous, linear
Euler-Bernoulli beam with an unstuck length of s, total length of L, thickness h, and depth b. The left end is
clamped and a distance δ above the substrate. The right end of the unstuck portion of the beam (at x = s)
has a fixed displacement w(s, t) = δ and no slope. A distributed load is used to represent the electrical loading
used in the preliminary experiments.20 Of course, an electric lateral load will be gap dependent and, as the
beam vibrates, this load will change. However, if the actuation pad used for exciting the beam is placed close to
the left post (as in the experiments of reference20), the lateral deflection will be small and the gap size will be
roughly constant. Under these circumstances, the load may be expressed as

P (x, t) = P (x)[cos(Ωt) − 1]. (1)

This consists of a static downward load and a periodic load. This excitation is consistent with the fact that
upward forces are difficult to apply (note that the load never exceeds zero). In addition, the time-varying portion
of this load gradually lifts off from zero (with zero slope at t = 0), as would most realistic loadings.

The total lateral beam deflection w(x, t) is measured from the free-standing configuration and consists of two
parts. The first represents the no-load equilibrium position of the adhered beam, i.e., describing the s-shape. This
deflection is given by ws(x, t) and may be obtained by elementary beam theory with the boundary conditions:
ws(0, t) = 0, w′

s(0, t) = 0, ws(s, t) = δ, and w′

s(s, t) = 0, where primes denote differentiation with respect to x.
The result is

ws(x, t) = δ

[
3x2

s(t)2
−

2x3

s(t)3

]
, (2)

which will clearly evolve as the beam unpeels from the substrate and s(t) increases. The second part of the
lateral deformation is produced by the applied load, “Eq.(1)”. This represents the lateral vibration of the
unstuck portion of the beam and is given by wm(x, t) (the subscript m denotes mode). These vibrations occur
about the s-shape, ws(x, t). And because the problem is linearly elastic and superposition holds, the total
deformation is simply w(x, t) = ws(x, t) + wm(x, t). From this description of the total deformation, it is evident
that the shape wm must satisfy clamped-clamped boundary conditions at x = 0 and x = s. Assuming the
response is dominated by a single mode, the vibration response may be expressed as

wm(x, t) = A(t)Ψ1

(
x

s(t)

)
. (3)

Here, A is the time dependent first mode amplitude and Ψ1 is the time dependent first clamped-clamped
vibration mode shape. This problem has two generalized coordinates s(t) and the modal amplitude A(t). La-
grange’s equations are used to obtain the equations that govern the behavior of s and A. The details of this
analytical formulation is given in reference.21 The analysis produces two coupled nonlinear ODE’s in the
unknowns s and A and are given as:

(C1 + C2A
2 + C3δA)

s̈

s
+ (C4A − C5)Ä = (κ1 + κ2 + κ3 + κ4 + Qs), (4)

where
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κ1 = C5Ȧ
2 (5a)

κ2 =
(
C7A

2 + C8A + C9

) ṡ2

s
(5b)

κ3 = − (C10A + C11)
Ȧṡ

s
(5c)

κ4 =
P1A

s4
+

P2

s4
+

P3A
3

s4
(5d)

and

(P4A − P5)s̈ + P6sÄ = (ϕ1 + ϕ2 + ϕ3 + QA), (6)

where

ϕ1 = (P7A − P8)
ṡ2

s
(7a)

ϕ2 = (P9)Ȧṡ (7b)

ϕ3 =
−P10A

s3
−

P11

s3
(7c)

where C1 → C11, and P1 → P11, are constants which arise out of the analysis. The values of these constants
have been provided in the appendix C.21

4. NUMERICAL FORMULATION

A traditional time marching approach is used to obtain a solution to the governing equations. This requires that
the equations be re-cast first order form; this converts the two, second order equations into four, first order ODE’s
in the variables A, Ȧ, s, and ṡ. Once in this form, a simple fourth order Rung-Kutta was used.28 Throughout
every simulation, the sign of ṡ was constantly monitored; if ṡ < 0, the model would no longer be valid and the
simulation was stopped.

5. RESULTS

In this section we shall consider the various different response characteristic such as the influence of harmonic
loading on the system, the importance of lateral vibrations, the effect of force and frequency on the repair process
of the unstuck beam etc. First the importance of the lateral vibrations (A(t)) is highlighted. Next the effect of
force on different unstuck length is studied and role of frequency on repair process is examined. Finally frequency
sweep is carried to confirm certain behavior seen experimentally.20

Proc. of SPIE Vol. 6884  68840A-4

Downloaded from SPIE Digital Library on 21 Jul 2010 to 129.92.250.43. Terms of Use:  http://spiedl.org/terms



0 100 200 300 400 500 600 700 800 900
0.4

0.5

0.6

0.7

0.8

0 200 400 600 800 1000 1200
0.4

0.6

0.8

1.0

1.2

s(t)
stot

s(t)
stot

 c  t
Stot

oτ

a)

b)

Figure 2: A plot of non dimensional beam length versus non dimensional time showing the effect of modal
amplitude for a fixed force value. so = 600µm, stot = 1500µm.

5.1. Harmonic excitation

The final objective is to characterize the growth of the unstuck region under periodic loading. In other words
we are interested in s(t) the longitudinal length of the unstuck beam. This leaves us with the question whether
lateral vibrations is important in this context. Moreover in the traditional cantilever dynamic fracture literature
(with static loads), lateral vibrations are uniformly neglected.22 To understand this, two different simulations
were carried out. In the first case Equation 4 and Equation 6 were simultaneously integrated, with the modal
amplitude and its derivatives set to zero, such that lateral amplitude were completely ignored. The second case
does not put any restrictions on the modal amplitude or its derivatives thus incorporating wm in the response.
The beams have a elastic modulus of 160GPA, width is 30µm, and thickness 2µm. The force amplitude was
P = 1500µN , and the excitation frequency was Ω/ω1 = 0.9, where ω1 is the first natural frequency of the bean
in initial shape.

“Figure 2”, shows the growth of the unstuck region for these two cases. The first case (2a) shows that the
stuck beam unpeels to a final length of approximately s/stot = 0.78 before it arrests. It means that the result
was a partial repair. The second case (2b) shows that the length grows to approximately s/stot = 1.1 before it
arrests. The dotted line in the “Figure (2b)” shows the cut of length or the total length of the beam. Any curve
beyond this horizontal line does not carry any physical meaning. Thus by this simple case it can be concluded
that lateral amplitude can have a tremendous impact on the extent of repair and should not be ignored.

5.2. Force amplitude and excitation frequency

In reference,20 it was shown that the forcing amplitude and frequency dramatically influenced whether the
debonding process was initiated or not. In that study, it was shown that if the excitation frequency was near a
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Figure 3: A plot of various unstuck beam length versus non dimensional time showing the effect of fixed force
and excitation frequency on various initial unstuck lengths . so = 500µm, 600µm, 800µm, stot = 1500µm.

resonant frequency, debond initiation was much more likely. Likewise, it is important to see how these quantities
impact the debonding process after initiation.

The material properties and beam geometry are the same as in the previous case. To examine the impact of
the excitation amplitude only, the excitation frequency is held fixed at Ω/ω1 = 0.9, where ω1 is the first natural
frequency of the system at its initial unstuck length, so. However, it should be noted that this is not truly a
fixed frequency problem. As the unstuck region grows, the effective length of the beam (i.e., its free length)
grows, which reduces the natural frequency. So even though the driving frequency Ω is fixed, its proximity to
the resonance condition changes. But a fixed Ω is physically easy to realize and, hence, of practical importance.

“Figure. 3,” shows the growth of the unstuck region as a function of time for various initial unstuck lengths.
These show a monotonic increase in the final unstuck length as the initial unstuck length changes. As such one
can see that at a given forcing amplitude and the excitation frequency as the initial unstuck length increases,
the extent of repair also increases. It means that to obtain a higher repair for a beam with a 33.33% unstuck
length more force will be required to obtain the same repair as a beam which, has 40% unstuck length.

Now consider the impact of the excitation frequency. Here the same physical system is used and the excitation
amplitude is fixed at P = 1500µN. “Figure. 4 ,” shows how the unstuck region grows as a function of time. If
the excitation frequency is Ω = 0.5ω1, the beam is repaired. If the excitation frequency is increased still further
to Ω = 0.75ω1, the unstuck length grows to 0.75stot and then arrests, short of full repair. If the excitation
frequency is further increased to near resonance Ω = 0.9ω1 the extent of repair drops to 0.65stot. This result
may seem unusual. Driving the system closer to (the initial) resonance actually produces less repair than driving
it at half of the (initial) resonance. This may be explained as follows. For Ω = 0.9ω1, the excitation is initially
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Figure 4: .A plot of non dimensional beam length versus non dimensional time showing the effect of variation of
excitation frequency for a fixed force value so = 600µm, stot = 1500µm.

sub-resonant (though nearly resonant) and debonding begins immediately with a large velocity. However, as
the beam unsticks, the natural frequency drops and passes through the excitation frequency. The excitation
frequency very quickly becomes super-resonant (Ω >> ω1), reducing the steady-state vibration amplitude. This
causes the system to arrest. But, for the case Ω = 0.5ω1, the situation is different. Debonding is initiated and,
again, the natural frequency drops. But it takes longer for the natural frequency to coincide with the excitation
frequency. This permits more momentum to build, such that the debonding process may carried through to
completion.

5.3. Frequency sweep

Frequency sweeps refers to increasing or decreasing the excitation frequency at a prescribed rate. Preliminary
experiments have used frequency sweeps and shown that the extent of a repair depends on the direction of
the sweep.20 This directional dependence could not be explained previously as the model only looked at the
parameters that initiated stick release . The current analytical model is capable of capturing this phenomenon
and explaining the underlying physics of such an occurrence. “Figure. 5,” shows two curves. The first curve
indicates the length of the unstuck beam when the excitation frequency is swept up. Here the frequency was
swept up over the range,0.1ω1 → Ω → 1.5ω1, where ω1 is the first natural frequency of the beam for s = so.
The sweep rate was set at ∆Ω = 10 Hz. This is achieved by incrementing the excitation frequency during each
time step by a fixed amount keeping the force at a constant value. The second curve indicates the length of
the unstuck beam when the excitation frequency is swept down: 1.5ω1 → Ω → 0.1ω1. Again the sweep rate
was set to ∆Ω = 10Hz. It is observed that sweeping the excitation frequency down produces complete repair
while sweeping up only repairs the beam partially. This phenomenon is exactly the same as was observed in the
preliminary experiments.20
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Figure 5: A plot of non dimensional beam length versus non dimensional time showing the effect of frequency
sweep up and down for a fixed force value . so = 700µm, stot = 1400µm.

This behavior can be explained by understanding the shift in the first fundamental frequency ω1 of the
unstuck beam. As the beam begins to peel off s(t) increases, and ω1 begins to drop. As the excitation frequency
is also decreased in the sweep down, bringing the excitation frequency Ω in closer proximity to ω1. In a sense,
the excitation chases the resonant frequency encouraging resonance and promoting repair. When the excitation
frequency is swept up from Ω = 1.5ω1 to Ω = 0.1ω1 the excitation frequency increases while the natural
frequency decreases. They quickly pass through one another and continue to move apart, preventing a continued
near resonant condition and hindering the repair. It can be concluded that sweeping the excitation frequency
down is more effective [i.e., if down sweeps promote a more complete repair] than frequency sweep up.

6. CONCLUSIONS

This paper explores the underlying physics of post initiation stiction release phenomenon. An analytical modal
which is a combination of vibration and dynamic fracture mechanics has been developed successfully. The numer-
ical simulations performed help in establishing the importance of lateral vibrations, effect of forcing amplitudes
and excitation frequency. It also provides an insight to the experimental results as seen in.20
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