PEDAGOGY IN LARGE LECTURE CALCULUS – TECHNOLOGY TO THE RESCUE

Amit Savkar, Fabiana Cardetti

University of Connecticut (UNITED STATES) amit.savkar@uconn.edu, fabiana.cardetti@uconn.edu

Abstract

The transition from high school to college is extremely difficult for students, in many ways. In particular, attending classes in large lecture format (150 students or more) adds a considerable burden to students in their first year. This burden stems from the many issues that have diluted the pedagogical influence of teaching in large lectures, such as lack of interaction between students and their instructors, diminished class participation, diminished availability of contact hours with the instructors, lack of directional study, and disconnect in assessment of students expectations. Our work involves the integration of technological tools as effective means of instruction in large lecture settings that address some of these issues.

Specifically, we have developed Micro-videos, a Clicker Question bank, and electronic Flashcards to enhance the students' learning experiences. Micro-videos were developed to improve the student-instructor interaction outside of class. These are short videos (less than 10 minutes) presenting key calculus concepts and problems that are traditionally challenging for students. A Clicker Question bank was created on the topics covered in Calculus I to facilitate active participation and engagement in the classroom. A sustained pool of questions allowed the use of this technology more effectively and frequently thereby increasing the student in-class participation. Finally, the set of electronic Flashcards was created to provide students with a successful directional study approach. In this paper we report on the planning and implementation process of these technological tools, as well as preliminary findings from student perceptions on the use of these technologies.

Keywords: Innovation, technology, large lecture classes, Micro-videos, Flashcards, Clickers.

1 INTRODUCTION

Technology has become an integral part of classroom instruction. Over the last one and half decade, instructors all over the world have adopted various instructional tools such as PowerPoint, WebCT, and clickers, to keep up with the pace of the changing world of technology. A study conducted by Parker, Bianchi, and Cheah focused on faculty and students' perceptions of the impact of technology on student attendance, class discussion, and connections between students in large lectures [1]. They found that technology, when used as a means to organize course content, made the information delivery process more efficient in supporting large lectures.

Another area of technology used in higher education is multimedia technology. This has had a significant impact on the development of lesson plans and methods of communication with students. For example, at the Multimedia University in Malaysia, a multimedia project was embedded within a constructivist learning environment. A study found that students had positive attitudes towards the project with respect to their learning motivation and understanding [2].

The infusion of information and technology in mainstream teaching practices has led to new ways of thinking about learning. Lambert and McComb define learning for the next generations as the "Ability to retain, synthesize, and apply conceptually complex information in meaningful ways" [3]. This learning is particularly important for students who choose to take online courses. Matuga conducted a study that underlines the impact of technology on various aspects of an online course [4]. The online course was offered at Bowling Green State University. It was a self-regulated and goal-oriented course in science. The results indicated that students who were high achievers became more motivated and confident in their ability to learn when compared to their low and average achieving counterparts. Other evidence presented in this study suggests that there is a significant role that technology plays in supporting cognition and student learning in an online course at all learning levels.

As the option of online education and technology in the classroom becomes a viable option to the students, institutions are redirecting their infrastructure investments into technology to increase the

instructional effectiveness [5]. Our institution has recently seen a transition in teaching first-year calculus. The class size of calculus courses has changed from class size of 35 students to large lecture class size of 150 students or more. Many instructors of these courses have turned to learn how to incorporate instructional technologies to help with the many issues that dilute the pedagogical influence of teaching in large lectures. These issues include, lack of interaction between students and their instructors, diminished class participation, diminished availability of contact hours with the instructors, lack of directional study, and disconnect in assessment of students expectations.

Our work involves the integration of technological tools as effective means of instruction in large lecture settings that address some of these issues. Specifically, we have developed Micro-videos, electronic Flashcards, and Clicker Question bank to enhance the students' learning experiences. In this article we provide details on how we developed these tools to aid the traditional teaching approaches in our calculus classes. We also present insights of students' perceptions about these tools. The article ends with concluding remarks that include future directions for research.

1.1 Micro-videos

In their studies about online learning environments, Peter Shea with Alexandra Pickett and their colleagues at SUNY have argued that student-instructor and student-student interaction are among the variables most strongly correlated with student satisfaction and self-reported learning [6]. As mentioned before, student-instructor interactions are affected in large lecture classes where contact hours are significantly reduced compared to regular-sized classes. To address this issue, we have developed what we call *Micro-videos*. Micro-videos can be used to support these interactions while promoting learning outside of the regular class time and place.

This tool consists of short videos that present key topics, calculations, or challenging problems in a concise fashion. The videos are posted online and can be viewed by students at a time most convenient for them. Hence, Micro-videos have the added benefit that students can watch them at their most convenient time and at their own pace. In Section 2.1 we provide further details of how we have incorporated Micro-videos in our calculus courses.

1.2 Electronic Flashcards

In the transition to college, most first-year calculus students are faced with the challenging task of changing their study habits, including developing new study strategies that differ greatly from the ones they used in school. The negotiations of first year students as they transition to college have received considerable attention among researchers [7-9]. Study habits are a vital factor in increasing academic integration as well as academic performance. However, many students are unaware of this important factor to college success.

In an effort to address this issue, we have developed a set of electronic Flashcards to assist students in the organization of their study materials, offering them a blue print of directional study that points to the key concepts in the course material. Flashcards were identified by Levine [10] as one of the academic strategies that provide learning support for students with certain disabilities. In recent years, researchers are encouraging the use of flashcards for *all* students [11,12]. In Section 2.2 we provide further details of how we have incorporated the use of flashcards in our calculus courses.

1.3 Clicker Questions Bank

For over a decade now instructors have been using 'Clicker' questions to increase classroom participation and, at the same time, obtain feedback on students' learning and understanding during lectures. With this technology, instructors can pose questions to the class which students answer using a transmitter, known as 'Clickers'. The class responses can be saved and then displayed in a variety of formats (histograms, pie charts, and so forth). When used appropriately, these results provide instructors an instantaneous assessment of the students' understandings and misunderstandings that help inform their pedagogical decisions; i.e., whether to move on to the next topic, or to further explain the current topic. The display of the aggregate responses can also be shown in class for students to monitor their own understanding as compared to the rest of the class and, when necessary, to open classroom discussions for students to clarify their ideas to each other [13]. Some researchers have reported how much students enjoy this technology and how it can create a positive and engaging learning environment in calculus classes [14-18]. These positive results have encouraged us to incorporate Clicker technology in our large lecture classes in an effort to increase student participation. In Section 2.3 we present further details of our work with this technological tool.

2 DEVELOPMENT OF TECHNOLOGICAL TOOLS

As it goes with technology there are certain resources that are needed to successfully implement these tools. For the use of Clickers a technology-ready (high-tech) classroom is necessary. Students need to buy clicker remotes to use in the classroom. Since Micro-videos and Flashcards are accessed electronically outside of the class, students need computer and Internet access. Instructors need a hand-held camera, a microphone, access to a well-lit room and a white board to make videos. They also need an editing software to create the Flashcards and Clicker Questions. In general, all these resources need a server to host them online. We discuss the development of these technological tools in detail in each of the following subsections.

2.1 Micro-videos

In this section we will discuss the nuances of what it takes to make a Micro-video. To increase the students' interest in using this tool, the videos should have an average length of 10 minutes. The preparations depend on the course for which the videos will be used. One must have a good understanding of the key concepts or problems that students struggle with the most; and understand why they struggle with them. This information will guide the careful selection of a problem(s) or example(s) to present in the video. Since the videos should be short (~10 min.), one is forced to choose the example(s) that best address the students' difficulty and help advance their level of understanding. For example, one of the videos we use focuses on the concept of Chain Rule, because we know that student find this particular topic difficult to grasp. In particular, they seem to get confused with the idea of finding the derivative of a composite function (function of a function).

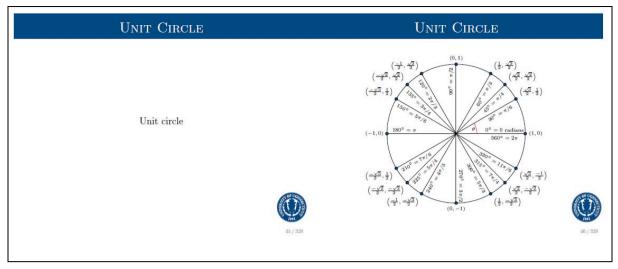
Once the material to be presented in a video is chosen, it is not necessary to use state of the art technology to prepare these videos. It is necessary to have access to a quiet place with good lighting, a board, a digital camcorder, and a movie editor. For example, one could use a hand-held Cannon Vixia HF R100. This is a standard/high definition camera that records in MPEG4-AVC format. This has a USB terminal which helps directly transfer recorded files to a computer. Then the file needs to be reviewed for its audio and video quality. We have found iMovie software with Macintosh operating system to be extremely useful in terms of its video editing features. We have used iMovie to enhance the quality of the audio and to cut the parts of video that were unnecessary such as idle time or bloopers. The time taken to carry out the editing process depends on how well prepared one is at the time of videotaping. If one does a good job at the blackboard, then editing can take only 15 minutes.

In our experience it took a couple of tries to get a good product at first. Thus, we strongly recommend starting by videotaping a simple explanation in a 5-minute video. This will allow one to focus on the video quality rather than on the specific material. One should observe the same teaching practices used in the classroom. That is, not speaking to the board, speaking loudly, not covering the writing with the body, presenting the material in an organized way, and so on. This first attempt should be checked for (a) sound clarity (audible, clear, distance from camera, microphone), (b) lighting on the board and on presenter (avoid glares), and (c) writing readability (distance from camera). It is best to obtain feedback on this trial video from colleagues and students.

In our experience, once the initial challenge of choosing the appropriate content is taken care of, the making of the videos is a smooth process. Each 10-minute video can take anywhere from one hour to 3 hours to make. This includes the time to get the equipment set and everything ready to record (preprocessing), and the time to edit the video and make it ready for streaming (post-processing).

We have used a SMART board and have been very satisfied with the quality; however, this is not necessary for the success of this teaching practice. Fig.1 shows the screen shot of a Micro-video in which several examples of the application of the chain rule is explained.

Fig.1 Screen shot of instructor Micro-video on the topic of Chain Rule


Opportunities for students to actively participate as they watch the video should be provided. This can be achieved, for example, by asking students to pause the video and work on a certain problem by themselves before they watch how it is solved on the video. As a final remark, it is important to recognize that the better-prepared one is to tape the video (just like one would be for a class), the smoother and faster the process will be.

2.2 Flashcards

Students make a transition from their high schools to the university setting in a short span of three months. As mentioned before, students have serious difficulty in organizing their study material. The primary purpose of developing these electronic Flashcards was to help students organize the material in their course in a systematic and concise manner. Students can use them during the class period to access previous concepts and outside of class in preparation for exams.

The Flashcards were prepared keeping in mind the general outline of topics for the course. Each chapter is divided into sections. Each section has various different subtopics, as well as important concepts that are necessary to understand subsequent sections or chapters. These subtopics were carefully chosen to anticipate their repeated used during the length of the course.

Electronic Flashcards were prepared using the text editing software `LaTeX'. This software allowed the use of technology to transform traditional flashcards, which have the question on the front and the answer on the back, to an electronic version. The electronic Flashcards are in the form of a PDF document. These can be downloaded by the students and printed on the paper. Fig. 2 shows an example of an electronic Flashcard with a unit circle. The left slide (front) indicates the question and right (back) indicates the corresponding answer.

Fig. 2 Screen shot of an electronic Flashcard

Students don't need to print these flashcards on paper since they are easily available as an electronic media. If the students should choose to print these, then it is recommended that they print six slides per page. They can then fold the paper in three equal parts and convert them into traditional paper flashcards.

2.3 Clicker Question Bank

As mentioned in Subsection 1.3, participation of students in large lecture classrooms has been one of the most challenging aspects of teaching in these settings. Clickers (Interactive response system) have been in use for over a decade to alleviate this problem. The success of this technology can be attributed to three factors: i) effective training in the use of technology prior to classroom implementation, ii) appropriate selection of questions to be used during the class period, and iii) clear communication with the students about the instructor's purpose for using this technology in class.

The following procedure was used in the development of the Clicker Questions bank for our calculus class. Each section from each chapter was carefully scrutinized to create a set of four to five questions per section. These questions were prepared keeping in mind `what the instructor wants the student to understand while answering the questions'. These questions were prepared using `LaTeX'. A screen shot of a typical Clicker Question is shown in Fig 3. The left side shows what the students see first, that is, the question with the choices for answers. The right side shows the correct answer and its justification. The right side is shown to the students once the class has discussed the question.

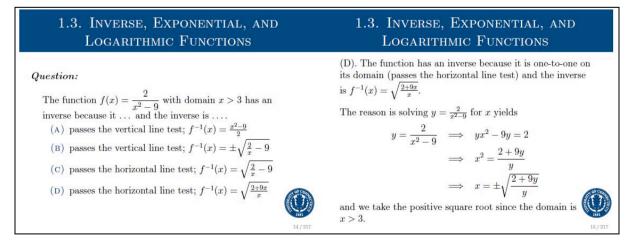


Fig. 3 Screen shot of Clicker Question on the topic of inverse functions

As mentioned earlier in this article, we created a sustained pool of questions to allowed the use of this technology more effectively and frequently thereby increasing the student in-class participation. This

bank of questions is available to the instructors of different sections of the calculus course, which makes the use of this tool a homogeneous practice across all sections.

3 STUDENT PERCEPTIONS

In this section we show some exploratory data on students' perceptions about choice to enroll in a class that provided each of the technological tools we have developed. The data presented here were collected in Fall 2010 from one section of a first-year calculus class. As a formative assessment, the instructor posed several questions in class and gathered the student responses using the 'Clicker' technology. The questions were aimed at understanding the general perceptions of the students about the calculus class. Three of those questions referred to each of the technological tools described in this article. The aggregate results on each of the three questions are presented here.

3.1 Micro-videos

One of the questions posed by the instructor to the students was the following:

Q: If you had a choice, would you choose to enroll in a mathematics class that provides Online Microvideos?

A graph representing the students' responses to this question is shown in Fig. 4. Each of the possible five responses is given on the *x*-axis, these ranged from *Definitely No* to *Definitely Yes*. The *y*-axis, height of the cylinder, represents the total number of students who chose the corresponding response.

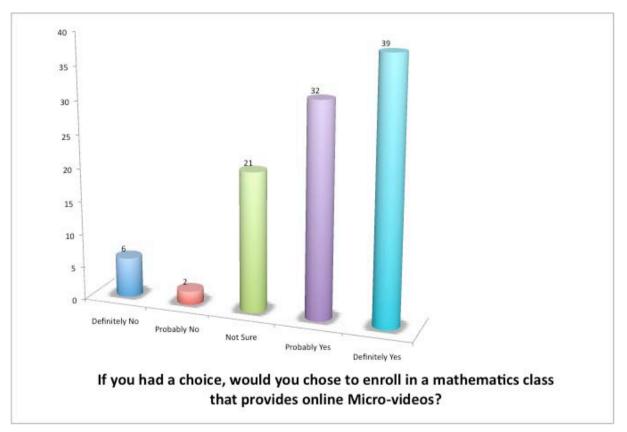
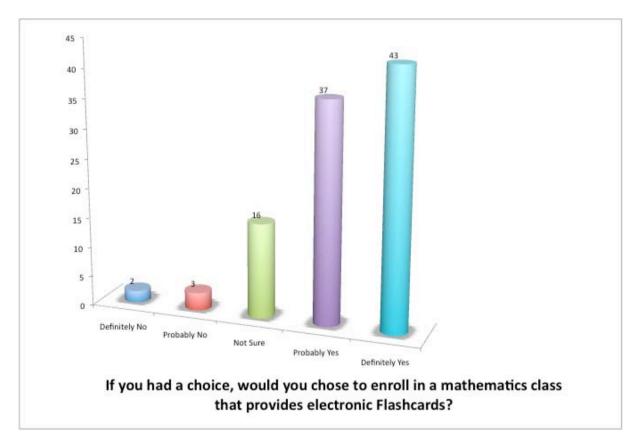


Fig. 4 Students' perceptions about Micro-videos

There were 100 unique responses to this question. As can be seen from the graph, the majority of these students, 71%, would choose a course that provides online Micro-videos. Very few students, 8%, responded that they would probably not or definitely not choose to enroll in such a course. While the rest of the students, 21%, answered that they were not sure about their choice.

Overall, these results suggest that students prefer classes that provide the Micro-videos. Since Micro-videos were used only outside of class, as a complement to the actual lecture, some students may not have been familiar with the Micro-videos. This may explain why some students were unsure of their


choice. These responses presented here were anonymous; hence we lack further explanation from the very few students that chose *probably not* or *definitely not*. One may conjecture that these students prefer some other type of help outside of class, or prefer no help at all. It is important to note that peer tutoring, office hours, and other typical forms of outside help were available to all students.

3.2 Electronic Flashcards

Another question posed by the instructor to the students was the following:

Q: If you had a choice, would you choose to enroll in a mathematics class that provides Electronic Flashcards?

A graph representing the students' responses to this question is shown in Fig. 5. Each of the possible five responses is given on the *x*-axis, these ranged from *Definitely No* to *Definitely Yes*. The *y*-axis, height of the cylinder, represents the total number of students who chose the corresponding response.

There were 101 unique responses to this question. As can be seen from the graph, the majority of these students, approximately 79%, would choose a course that provides electronic Flashcards. Very few students, about 5%, responded that they would probably not or definitely not choose to enroll in such a course. While the rest of the students, about 16%, answered that they were not sure about their choice.

Overall, these results suggest that students overwhelmingly prefer classes that provide electronic Flashcards. As with Micro-videos, electronic Flashcards were used only outside of class, as a complement to the actual lecture, thus some students may not have been familiar with them. This may explain why some students were unsure of their choice. The responses presented here were anonymous; hence we lack further explanation from students, especially from the few who chose *probably not* or *definitely not* in this question. Given the non-intruding nature of electronic Flashcards, it is difficult to interpret these students' response.

3.3 Clicker Question Bank

Still another one of the questions posed by the instructor to the students was the following:

Q: If you had a choice, would you choose to enroll in a mathematics class that uses 'Clickers'?

A graph representing the students' responses to this question is shown in Fig. 6. Each of the possible five responses is given on the *x*-axis, these ranged from Definitely No to Definitely Yes. The *y*-axis, height of the cylinder, represents the total number of students who chose the corresponding response.

Fig. 6 Students' perceptions about Clickers

There were 103 unique responses to this question. As can be seen from the graph, the majority of these students, about 69%, would choose a course that uses Clicker technology. Some students, about 25%, responded that they would probably not or definitely not choose to enroll in such a course. While the rest of the students, about 6%, answered that they were not sure about their choice.

Overall, these results suggest that students prefer classes that use Clicker technology. Very few students were unsure about their choice. We have mentioned many of the advantages of this technology already (see Section 1.3); however, there are also some disadvantages related to Clickers, such as extra costs to students, that may explain the reluctance of some students to choose courses that use this technology. Since these responses were anonymous, we lack details to further interpret these students' responses.

4 CONCLUSIONS

With the growing tendency of offering courses in large lecture format, it is becoming increasingly important to understand the instructional tools that can be used to aid student learning in this setting. In this article, we have described the development and implementation of three technological tools that address some of the main issues of large lectures while helping students make a more comfortable and successful transition to college. Based on our experience, we are convinced that other educators would find that these tools are easily adaptable to their own classes to enhance learning.

Additionally, our exploratory findings indicate that the majority of the students prefer to enroll in classes that incorporate these tools. Further research is needed to confirm these results and extend our understanding of the use of these tools to positively affect student learning. Future research must focus on conducting rigorous and systematic studies about each of these tools affect student learning and student achievement, as well as studies that continue to explore students' and instructors' perceptions of the benefits of these tools from their perspectives. This article is the beginning of what we hope will become an important research endeavor for mathematics educators, as well as educators in other disciplines, on improving college teaching and learning.

REFERENCES

- Parker R. E., Bianchi A. & Cheah T Y. (2008). Perceptions of Instructional Technology: Factors of Influence and Anticipated Consequences. *Educational Technology & Society*, *11* (2), 274-293.
- [2] Neo, M., & Neo, T-K. (2009). Engaging students in multimedia-mediated Constructivist learning Students' perceptions. *Educational Technology & Society, 12* (2), 254 -266.
- [3] Lambert, N M., & McCombs, B.J., (1998). Introduction: Learning-Centered Schools and Classrooms as Direction for School Reform. In Lambert, N.M. & McCombs, B.L. (Eds), *How Students Learn: Reforming Schools Through Learner-Centered Education*, Washington, DC: American Psychological Association, 1-22.
- [4] Matuga J. M. (2009) Self-Regulation, Goal Orientation, and Academic Achievement of Secondary Students in Online University Courses. *Educational Technology & Society, 12*(3), 4-11
- [5] Deden, A. & Carter, V.K. (1996). Using Technology to Enhance Student's Skills. In Jones, E.A. Preparing Competent College Graduates: Setting New and Higher Expectations for Student Learning. *New Directions for Higher Education*; No 96, Winter 1996, Jossey-Bass Publishers: San Francisco.
- [6] Shea, P., Swan, K., Fredericksen, E., and Pickett, A. (2002) Student Satisfaction and Reported Learning in the SUNY Learning Network, *Elements of Quality Online Education*, Needham, MA: SCOLE.
- [7] Clark, M. R. (2005). Negotiating the freshman year: Challenges and strategies among first-year college students. *Journal of College Student Development*, *46*(3), 296-316.
- [8] Madgett, P. J., & Bélanger, C. H. (2008). First university experience and student retention factors. *Canadian Journal of Higher Education*, *38*(3), 77-96.
- [9] Terenzini, P.T., Rendon, L. I., Upcraft, M. L., Millar, S. B., Allison, K. W., Gregg, P. L., & Jalomo, R. (1994). The transition to college: Diverse students, diverse stories. Research in Higher Education, 35(1), 57-73.
- [10] Levine, M. D. (1999). *Developmental variation and learning disorders*. Cambridge, MA: Educators Publishing Service
- [11] McGlaughlin, S. M., Knoop, A. J., & Holliday, G. A. (2005). Differentiating students with mathematics difficulty in college: Mathematics disabilities vs. no diagnosis. *Learning Disability Quarterly, 28*, 223-232.
- [12] Iossi, L. (2007). Strategies for reducing math anxiety in post-secondary students. In S. M. Nielsen & M. S. Plakhotnik (Eds.), *Proceedings of the Sixth Annual College of Education Research Conference: Urban and International Education Section* (pp. 30-35). Miami: Florida International University.
- [13] Mazur, E. (2009). Farewell, Lecture? Science, 323, 50-51.
- [14] Cline, Kelly S. (September 2006). Classroom Voting in Mathematics. Mathematics Teacher, 100 (2), 100-104.
- [15] Lomen, D. O., & Robinson, M. K. (2004). Using ConcepTests in single and multivariable calculus. Paper presented at the 16th Annual International Conference on Technology in Collegiate Mathematics, Chicago, IL.

- [16] Lucas, A. (2009). Using peer instruction and i-clickers to enhance student participation in calculus. PRIMUS, 19(3), 219-231.
- [17] Miller, R. L., Santana-Vega E., & Terrell M. S. (2006). Can Good Questions and Peer Discussion Improve Calculus Instruction? PRIMUS 16(3), 193-203.
- [18] Pilzer, S. 2001. Peer Instruction in Physics and Mathematics. PRIMUS. 11(2), 185–192.