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On the Use of Structural Vibrations to Release
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Abstract—This paper identifies dynamic excitation parameters
that promote decohesion of stiction-failed microcantilevers. The
dynamic response of “s-shaped” adhered beams subjected to har-
monic loading is described using modal analysis; this model is then
used to predict the onset of debonding in the context of a critical
interface energy. These theoretical results are used to rationalize
preliminary experiments, which illustrate that dynamic excitation
may be used to affect partial or complete repair of stiction-failed
microcantilevers. The theoretical results provide fundamental in-
sight regarding regimes where resonant effects trigger debonding
and can serve as a potential mechanism for stiction repair. The
models illustrate that driving a structure at resonance is usually
beneficial with regards to debonding. However, this is not univer-
sally true; there is no benefit to driving a device at frequencies with
unfavorable mode-shapes. Thus, these results provide a reasonable
physical and mathematical explanation for the preliminary exper-
imental results, while providing a roadmap for identifying param-
eters in future tests. [2006-0055]

Index Terms—Repair, stiction failure, vibrations.

I. INTRODUCTION

MICROELECTROMECHANICAL systems (MEMS) are
continually plagued by reliability issues arising from ad-

hesion between adjacent components, which is known to pro-
mote wear and operational failures. In extreme circumstances,
the adhesion is large enough to prevent separation, a phenom-
enon commonly referred to as stiction-failure. There are a va-
riety of physical mechanisms that promote adhesion, including
capillary effects (often promoted by hydroxyl groups introduced
during the release procedure), van der Waals forces, and electro-
static forces [1], [2].

Consider, for example, the stuck microcantilever shown in
Fig. 1(a). Here an initially freestanding cantilever is stuck to the
substrate in what is commonly referred to as the “s-shape.” The
strain energy in the deformed structure serves as a driving force
for decohesion. The competition between stored elastic energy
and adhesive forces at the contact interface has naturally led to
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Fig. 1. (a) A schematic of a stiction-failed s-shaped beam. (b) A schematic of
the material geometry of the beam/substrate used in the preliminary tests.

the application of fracture mechanics models. These models in-
troduce a critical interface adhesion energy that must be over-
come to initiate debonding [3]–[8]. This framework is attractive
because of both its simplicity (i.e., it does not require an ex-
plicit description of a force-separation adhesion relation) and
its ability to predict failure using a single parameter character-
izing the interface, regardless of the physical mechanism under-
lying the adhesion. This is a critical advantage since many ad-
hesion mechanisms involve nanoscale forces and displacements
that are difficult to measure directly.

The principal motivation for this analysis is to evaluate the
efficacy of using structural vibrations to promote the release
of adhered structures. Such vibrations can often be induced
using the functionality of the MEMS device itself, which
is a key advantage over alternative approaches that require
additional instrumentation for external excitation (e.g., ul-
trasonic substrate pulses, laser heating, etc.). To enhance the
efficiency of structural vibrations to trigger stiction repair,
one may combine vibrations with surface treatments, such as
hydrogen terminating treatments, self-assembly monolayers,
fluorocarbon films formed by plasma polymerization reactions,
and diamond-like carbon coatings [9], [10].
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Previous attempts have been made to promote stick-release
by delivering ultrasonic pulses (waves) through the substrate
to the stiction-failed component [9], [10]. This purely exper-
imental effort achieved some measure of success. However,
this approach is not specific to the failed component, in that
neighboring (nonstuck) components are also subjected to
excitation. Another approach that has received considerable
attention involves applying short laser pulses to repair the
component thermally [13]–[16]. In contrast to the wave prop-
agation approach, laser pulse heating is component specific.
Again, structural vibrations could be used to compliment this
existing approach. Vibrations could be combined with laser
pulse heating; the increase in strain energy resulting from
laser heating can be supplemented with dynamic energy im-
parted via vibrations, leading to highly effective repairs. In the
event the laser heating produces sufficient thermal stresses to
cause component buckling, dramatic snap-through vibrations
could promote significant out-of-plane deformation, leading to
debonding [16].

This paper begins by describing some preliminary experi-
mental results, which clearly demonstrate that electrically in-
duced vibrations can achieve partial or total repair of a stic-
tion-failed microcantilever. These observations provide the mo-
tivation to develop a vibrations/fracture mechanics model to pre-
dict the effect of the structural dynamic response on debond ini-
tiation, such that effective parameter combinations can be esti-
mated a priori. The models presented here couple the dynamic
response of the beam (as predicted via modal analysis) to a frac-
ture mechanics model used to predict growth of the unstuck re-
gion; see Fig. 1(a). The important end result is an analytical ex-
pression for the energy release rate in terms of the dynamic re-
sponse of the beam. Of course, the energy release rate reduces
to previously published quasi-static results in the limit that the
excitation frequency goes to zero [3]–[8].

A linear vibration model is developed to predict the time
dependent response of a partially adhered beam, as shown in
Fig. 1(a). This model superposes a closed-form solution for the
dynamic response of a clamped–clamped beam of length (the
free length of the beam) with the static solution, describing the
initial s-shape. It should be emphasized that the vibration anal-
ysis is only valid for a beam of fixed unstuck length. After de-
cohesion is initiated and the beam begins to peel away from the
substrate, the unstuck length changes and the vibration analysis
is no longer valid. Hence, this paper focuses only on the initia-
tion of debonding.

These models are used to determine parameter combinations
that lead to the initiation of decohesion in microcantilevers. Par-
ticular attention is paid to the role of the forcing amplitude

and the forcing frequency in decohesion. This leads
to well-defined regions in the parameter space where vi-
brations are effective in initiating peeling. Other combinations
exist where vibrations are less effective. These various behav-
iors form a rational basis for choosing excitation parameters for
initiating release of stiction-failed microcantilevers and are ex-
plained in terms of the underlying physics of the system.

II. VIABILITY OF THIS APPROACH—PRELIMINARY

EXPERIMENTS

To demonstrate the potential use of structural vibrations to
produce stiction-repair, preliminary experiments were carried

out on stiction-failed microcantilevers. The tests involved
s-shaped and arc-shaped stiction-failed microcantilevers that
were driven using electrostatic forces. A schematic cross-sec-
tional view of the microcantilevers is shown in Fig. 1(b). All
beams considered in this work have a free length of 1000 m
and a width of 30 m. Other relevant dimensions are shown
in Fig. 1(b). Two layers of dielectric materials (silicon dioxide
and silicon nitride) serve as electrical insulation between the
silicon substrate and polysilicon cantilevered beams. During
electrical actuation, the doped cantilevered beams were elec-
trically grounded while a varying voltage was applied to the
actuation pad. The microcantilever arrays were fabricated at
Sandia National Laboratories using the four-layer SUMMiT IV
process [17].

Release of the microcantilevers was performed at the exper-
imental site. The die was received from Sandia with the sacri-
ficial layers intact. These layers were then removed using a 15
min etch in a solution of 49% HF. The die was then rinsed using
deionized water and subsequently rinsed in isopropyl alcohol.
The duration of all rinses was 5 min. Following the isopropyl
alcohol rinse, the die was placed onto a hot plate at 110 C for
10 min. The die used in these experiments were then stored in a
desiccator for several months.

Fig. 2 shows deflection profiles of a set of beams in two dif-
ferent configurations: s-shaped and arc-shaped (stuck at the tip).
These profiles were determined using a Michelson interferom-
eter [7], [8], [16], [18]. Initially [Fig. 2(a)], the beam was in the
s-shape. In the first set of experiments, oscillations were induced
in the beam by applying a square wave voltage to the actuator
pad at an amplitude of 20 V peak-to-peak. The frequency of
the square wave was swept from 20.6 MHz down to 4 MHz, at
a rate of approximately 200 kHz/s, and the geometry changed
from s-shaped to arc-shaped; see Fig. 2(b). This experiment was
repeated three times with the same set of beams, with each re-
sult being the same. An array of beams can be repeatedly used
by applying a 100 VDC to the actuation pad causing the beams
to repeatedly fail in an s-shaped mode.

In a second set of experiments, arc-shaped beams were sub-
jected to a sinusoidal excitation with a peak-to-peak amplitude
of 220 V, while the frequency was swept from 2.6 to 400 kHz
at an approximate rate of 4 kHz/s. This resulted in complete
repair of two of the six initially arc-shaped beams, producing
freestanding beam shapes; see Fig. 3.

The beams in both sets of experiments were observed to os-
cillate with the applied voltage. These oscillations appeared to
correspond to the frequency of excitation. Increasing the ex-
citation frequency caused increased oscillations in the beam,
and the opposite was observed for decreasing the excitation fre-
quency. The correspondence between the driving and response
frequency was not quantified due to the experimental equipment
utilized (an interferometric microscope with no additional in-
strumentation). It is interesting to note that the direction of the
frequency sweeps leads to dramatically different behavior; a ra-
tionale for this behavior is provided in the discussion.

These proof-of-concept tests clearly demonstrate that it is
possible to repair stiction-failed cantilevers using structural
vibrations. More detailed experiments are being conducted to
characterize more fully the efficiency of this repair strategy
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Fig. 2. (a) and (b) show the same set of beams in different configurations. The
out-of-plane displacements of the beams are determined using a Michelson in-
terferometer, where two adjacent similarly colored fringes are 274 nm apart. (a)
Beams 1 and 2 are failed in an s-shaped manner. (b) Beams 1 and 2 have been
partially repaired by applying 20 Vpp to the actuation pad (beams are grounded),
thus oscillating the beams. The frequencies applied ranged from 4 to 20.6 MHz.
This excitation caused the failure mode to change from s-shaped to arc-shaped.

as a function of the dynamic excitation parameters. However,
the remainder of this paper is intended to provide a theoretical
foundation for understanding the dynamic stick-release process
and to identify effective excitation parameters that can be used
to guide future experiments and device design.

III. ANALYTICAL MODELS

Two models are developed to predict the initiation of deco-
hesion of adhered cantilevers, which are subjected to harmonic
point-loads or uniform pressures. The first model is a linear
vibration model for the response of the beam (Section III-A).
This model is used as an input to an interface fracture model
(Section III-B), which yields the energy release rate governing
debond initiation. These models are used together in Section IV
to predict the onset of decohesion in terms a critical interface
energy. Fig. 1(a) depicts the geometry analyzed here: a can-
tilevered microbeam deformed into an s-shape with adhesion at
the beam-substrate interface. The rectangular beam has length

, an unstuck length , depth , and thickness . Lastly, is
the gap between the substrate and the neutral axis of the free
standing beam. Two different harmonic loading scenarios are
considered: a point load and a distributed load. The motivation
for these two cases is as follows. The point load solution may be
used, via a Green’s function analysis, to examine more compli-
cated pressure distributions. The distributed load approximates

Fig. 3. (a) and (b) show the same set of beams (though different from Fig. 2). (a)
Beams 1 and 2 are failed in an arc-shaped manner. (b) Beams 1 and 2 have been
fully repaired by applying 220 Vpp to the actuation pad (beams are grounded),
thus oscillating the beams and fully releasing them from the substrate. The fre-
quencies applied ranged from 2.6 to 400 kHz.

the applied voltage used in the preliminary experiments of
Section II. Of course, the applied voltage problem provides
a force that is gap-dependent. However, with the actuation
pad near the post, this effect can roughly be ignored since
the deflection of the loaded portion of the beam is relatively
small—making variations in the gap negligible.

A. Vibration Model

The stiction-failed cantilever beam shown in Fig. 1(a) is sub-
jected to a harmonic transverse load. For an arbitrary load dis-
tribution, this may be expressed as

(1)

This consists of a static downward load and a periodic load. This
form of excitation was chosen because upward forces are diffi-
cult to apply in either an electrical or mechanical loading sce-
nario; the constant term ensures that the load never exceeds zero
(i.e., it is always pushing down). In addition, the time-varying
portion of this load gradually lifts off from zero (it has a zero
slope at ), as would most realistic loadings. Note that in the
case of mechanical loading (as opposed to the electrical loading
used in the stiction release experiments), this load might be de-
livered by, say, an instrumented nanoindentor.

We define the total deflection as a superposition of the no-load
equilibrium position of the adhered beam (i.e., the s-shape) and
the response of the beam under the load given by (1). The ini-
tial, zero-load s-shape of the beam is measured from the
straight, freestanding position. This initial shape is dictated by
elementary beam theory and the following boundary conditions:
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, , , and . The initial
deflection (with zero applied load) of the beam is

(2)

where the unstuck length may be determined using static frac-
ture mechanics, as will be described in Section III-B. This shape
is used as the reference position for the loaded beam, i.e.,
is measured from . This loaded beam deflection includes
inertial effects and the influence of the externally applied load.
Modal analysis is used to obtain a solution to the governing dy-
namic beam equation, given by

(3)

where is the mass per unit length, is the structural damping
constant, and is the bending rigidity; dots and primes refer
to derivatives with respect to time and space, respectively. Note
that represents the deflection arising from the applied
load and does not include the initial deflection arising from
the gap separation. In other words, is the solution to a
straight, clamped–clamped beam of length . A separable solu-
tion of the following form is sought:

(4)

where is the th mode shape of a clamped–clamped beam
[19]. Substituting this assumed solution into (3) and invoking
orthogonality renders the following second-order ordinary dif-
ferential equation for the th modal amplitude :

(5)

with , , the modal
damping ratio, and a constant arising from the th mode shape
[19]. Values for are 4.73, 7.85, 10.99, etc., for first, second,
and third mode, respectively. The complete solution to (5) con-
sists of three parts obtained via superposition. is the response
due to the static downward load . is the steady-state re-
sponse due to the harmonic load. is the transient response.
In this case, the lateral deflection, measured from , is

(6)

The individual terms are

(7)

(8)

and

(9)

Here, is the dimensionless driving frequency,
is th damped natural frequency,

is the phase
angle, and the coefficients and are found from the
initial conditions. Throughout this paper, it is assumed that the
initial conditions are zero displacement (relative to the static
position ) and zero velocity. In this case, the constants are

(10)

and

(11)

where .
In the following section, it will be clear that the energy release

rate has two portions. The first stems from the initial deflection
. The second comes from the dynamic bending moment

per unit thickness at the crack tip . The latter quantity
may be determined using the dynamic deflection (6) and the
relation .

B. Fracture Model

A fracture mechanics model is used to predict the onset of
decohesion between the beam and the fixed, semi-infinite sub-
strate. The “crack tip” occurs at the point of separation of the
two surfaces, as indicated in Fig. 1(a). The energy release rate

governs the propagation of the crack tip, which corresponds
to growth of the unstuck region. Our loading scenario may be
achieved by a sequential loading procedure. First, a prescribed
displacement is applied to the right side of the beam (for

); this produces the initial s-shape deflection . Sec-
ondly, the prescribed force (1) is then applied to this new geom-
etry. Each of these contribute to the overall energy release rate.

There are subtleties involved in calculating energy release
rates for scenarios that involve both displacement and force
loads [20]. Generally speaking, the energy release rates from
two distinct loadings do not superpose; because
(the stress intensity factor) and , it is evident that

. However, when the deformation arising from
the second load is referenced to the deformed state of the first,
the situation is slightly different. Here, the prescribed displace-
ment (corresponding to the gap separation) leads to . Next,
the force is applied and the work is , where is the
additional displacement produced after the initial, prescribed
displacement. This approach has the effect of uncoupling the
two processes, as described by Lawn [20]. Thus, the correct ex-
pression for in this particular loading scenario is uncoupled:

—provided one uses the relative
displacements arising from the pressure load.
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To arrive at our initial geometry, the right side of the beam
must undergo a prescribed (vertical) displacement of .

This leaves the beam in the s-shape, and the deformation is given
by . This energy release rate, which represents a constant
that is independent of the applied pressure or point loads, is
given by

(12)

See [3], [5], and [6]. The subscript represents the “static” con-
tribution for the energy release rate due to the initial static de-
flection of the beam. For a given interface energy , this equa-
tion dictates the unstuck length . This ex-
pression is obtained by striking a balance between the strain en-
ergy and the interface energy. In other words, , which in-
dicates an equilibrium configuration associated with impending
debonding. Any upward load causing an upward deformation at
the crack tip immediately initiates debonding.

The applied force (1) is introduced, and displacements are
referenced to the deformed state arising from imposing (12).
The energy release rate may be derived from an energy flux
integral approach [21]. This includes strain energy, transverse
inertial effects, and inertial effects arising from changes in the
crack length (i.e., crack propagation). The energy release rate
is

(13)

where is the rate of crack advance and is the shear wave
speed in the material [21]. is the bending moment
per unit depth that results from the applied force only. The sub-
script indicates that this contribution to the energy release rate
is due to the “dynamic” load. The moment due to the initial de-
formation has been accounted for in the first part of the
loading (the prescribed displacement). The objective here is to
examine parameters that lead to the initiation of crack advance;
hence, . Note that a similar expression may be obtained
using a purely static energy release rate along with the dynamic
response, as described in the Appendix.

The total energy release rate for this sequential loading
process of a prescribed displacement and then an external force
is

(14)

The criterion for the initiation of crack propagation is
, where is the interface energy. In these interface problems,
plays the same role as the material toughness for traditional

fracture problems.
If one assumes that the initial unstuck length is governed

by the condition given as (12), then the system is initially at
an unstable equilibrium; any loading that increases the gap
size (by decreasing the deflection from the initial value )

will trigger decohesion. When inertia effects are neglected, no
amount of electrostatic pressure, which acts to narrow the gap,
will trigger decohesion. However, inertial effects will cause
positive deflections (relative to the initial static equilibrium
position) that increase the gap size and trigger debonding. That
is, even compressive pressure can trigger decohesion because
inertia effects will cause “overshoot” past the initial static
deflection.

In fact, any dynamic loading, even at low frequencies, will
trigger decohesion when (12) is imposed, i.e., when the initial
unstuck length is determined from . This is because
even very low frequencies result in a finite, albeit asymptoti-
cally small, overshoot that raises the energy release rate above
the initial value. It is clear from the preliminary experiments
that a critical forcing amplitude and frequency combination is
required to trigger decohesion. This can be rationalized physi-
cally as follows. The applied electrostatic pressure is compres-
sive, and acts to close the gap. This initial squeezing of the gap
leads to changes in the local details of the contact in the adhered
region. It is likely (and supported by the experiments) that lat-
eral sliding of asperities during initial compressive loading in-
creases the true contact area. Since will depend strongly on
the conformational details of the contact [6], it is likely that
increases above the initial value that describes the initial adhe-
sion event.

To capture this behavior, the interface energy that must be
overcome in the vibration repair mechanism is , where
is a positive constant greater than unity. The modeling and dy-
namic repair experiments such as those outlined here represent
an opportunity to determine experimentally the magnitude of
this interface energy enhancement .

IV. RESULTS

Two different loading scenarios are considered: a point force,
as might be applied with an external probe [3], and a uniform
pressure applied over a portion of the beam. For point forces,
the load distribution is , where is the
load location and is the Dirac delta function. While point
loads may be difficult to implement at the microscale, they pro-
vide the foundation for more complicated distributed loading
scenarios via a Green’s function analysis. The uniform pressure
loading corresponds to ,
where is the Heavyside step function initiated at

. This scenario is motivated by the possibility of exciting
the beam with harmonic electrostatic pressures, generated by
varying the electrical potential between the beam and substrate
over the region . Strictly speaking, an electro-
static pressure generated between the deflected beam and sub-
strate would not be uniform, as it depends on the separation be-
tween the beam and the substrate. However, if the loading region
is near the left post [see Fig. 1(a)], the deformations would be
small and the variation in the gap size could be ignored.

The remainder of this paper focuses on finding parameter
combinations of the excitation frequency and applied force

that lead to the initiation of debonding. The former is nor-
malized by the first natural frequency of the system: .
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The latter is normalized by the load required to cause initial con-
tact between the tip of a freestanding cantilever beam and a sub-
strate: . For the point-loaded beam, the contact load
is given as

(15)

For a uniformly distributed load over the region ,
the load per unit length required to initiate contact is

(16)

To put things in perspective, consider the following microcan-
tilever [3]: m , m, m,

m, m, m (point
force), , and m (distributed force).
In this case, the normalizing loads are and

N/m for the point and distributed forces, re-
spectively.

A. Modal Convergence

Whenever a dynamic response is described in terms of a series
solution [i.e., (4)], one must establish the number of modes re-
quired to obtain accurate results. For the remainder of this paper,
the results are considered convergent if, near any resonance, ad-
ditional modes do not change debonding force by more than

. The focus is placed squarely on frequen-
cies near resonance; the logic being that these frequencies hold
the most promise for initiating debonding. However, it is im-
portant to recognize that this criterion does not automatically
ensure that the behavior at any arbitrary frequency will be “as
converged.” In other words, if modes are required for con-
vergence at (the second resonance), then using
modes at may or may not be sufficient to ensure
that the required forcing amplitude is converged to within the
criteria .

For a point force located at , two modes are suf-
ficient to achieve the aforementioned convergence. For a uni-
formly distributed load applied over the range ,
four modes have to be retained. However, for the sake of unifor-
mity and to ensure satisfactory convergence at all frequencies,
ten modes are retained for all of the results presented herein.

B. Results for Point-Loads

1) Behavior in the Steady-State Regime: In this section,
debond initiation is examined using only the steady-state re-
sponse, i.e., in (6). There are three reasons for first
looking at only the steady-state behavior. First, it is possible that
some adhesion mechanisms are time or cycle-dependent: for
example, adhesion arising from hydrocarbon contamination. In
this case, debonding might require numerous successive cycles
with a large driving force to damage the material accumulated at
the interface. This is more likely to occur during the steady-state
response than in the transient phase of the motion. Secondly, a
steady-state only analysis is conservative. This stems from the
fact that the total response is the sum of the transient and the

steady state. Using only the steady state will result in smaller
amplitudes (in the transient phase of motion). Hence, larger
forces will be required to produce sufficient deformation to
induce debonding. Thirdly, a closed-form expression relating
the force amplitude and the excitation frequency may be easily
obtained. This allows for a straightforward estimate of the load
amplitude needed to initiate debonding for a given excitation
frequency.

The closed-form expression for the excitation amplitude (to
produce debonding) as a function of excitation frequency is
found using the energy release rate

(17)

where is the contribution of the mode to the moment at
the crack tip. The maximum steady-state moment is simply

(18)

If and
, then the steady-state energy re-

lease is given by

(19)

Applying the criterion for initiation of crack propagation,
namely, that the energy release rate is equal to the new (com-
pressed) interface energy , one obtains

(20)

Solving for the load amplitude yields

(21)

For a given excitation frequency (which appears in ),
(21) may be used to determine the steady-state force amplitude
required to initiate debonding.

Consider the steady-state response for a point-load located at
(the normalized location along the beam)

with damping . The solid line in Fig. 4 shows the
steady-state (only) load amplitude required to initiate debonding
as a function of the excitation frequency, i.e., the pa-
rameter plane. At low frequencies, , the excitation is
driven to zero because ; see (1); hence, the
force amplitude required to initiate peeling asymptotes to
infinity, because the inertia terms that drive the beam past the
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Fig. 4. A parameter diagram showing the combination of the applied point
force and excitation frequency required to initiate debonding. Point load at

, damping .

initial static deflection asymptotes to zero. As the frequency is
increased from zero, inertial effects become increasingly impor-
tant, and the required force amplitude decreases to a minimum
at approximately . At resonance, the overshoot due to
inertia effects is amplified and the added energy overcomes the
interface energy and debonding is initiated at lower force levels.
As the excitation frequency is increased beyond
the first resonance, the required force increases. This process
is played out each time the excitation frequency approaches a
natural frequency , , , etc.

In between resonances, the required load amplitude increases
dramatically. The physical mechanism at play is the modal
phase difference between the excitation and the response.
To demonstrate this, consider the power imparted to the system
over one steady-state cycle. This is defined as the integral of
the force multiplied by the load point velocity

(22)

For simplicity, one may ignore the constants and focus on the
time-dependent terms . Differentiating (8) gives

. Noting that the modal phase angle transitions from zero
below resonance, to 2 at resonance, to above resonance, the
power integral becomes

(23)

This clearly indicates that away from the th resonance, the
power delivered to the system by the th mode is virtually zero.
At the th resonance, the power delivered is a finite value. So in
between resonant frequencies, very little power is delivered to
the system and a much larger load amplitude is required to make

up for this power loss. Conversely, near , the power de-
livered by the th mode is large and, although all of the other
modes contribute almost nothing, the load required to initiate
decohesion is reduced.

2) Behavior in the Transient Regime: Now consider the total
beam response (steady-state transient) and the energy release
rate. In this case, a closed-form expression for the parameter
combinations that initiate peeling does not exist. Instead,
a numerical procedure is used. The procedure involves fixing
the excitation frequency, and setting the excitation level,

to a low value. The total dynamic response is then used
to calculate the time-dependent moment at the crack tip, such
that the value of the energy release rate can be monitored as a
function of time for, say, 1000 forcing cycles. If does not
exceed , then the excitation amplitude is increased and the
procedure is carried out again. This continues until a forcing
amplitude is found such that for at least one instant
in the response. This indicates that debond initiation has taken
place at this combination; this parameter combination is
saved. The excitation frequency is incremented and the proce-
dure is repeated.

Now consider the dashed lines in Fig. 4; these correspond
to using the total response to calculate the energy release rate.
The total solution results show the same general trends as the
steady-state only results. At low frequencies, the required force
amplitude is infinite. Near each resonant frequency, the force re-
quired to initiate debonding drops. And in between resonant fre-
quencies, the required excitation amplitude increases. Quantita-
tively, the transient steady-state results require a much lower
amplitude than the steady state only case. This confirms the ear-
lier statement that estimates based on a steady-state analysis are
conservative.

3) Anomalies: The moral of the story is clear: drive the
system near a resonant frequency and the likelihood of repair
is high. However, this is not universally true. Consider, for
example, an alternate load location, . Fig. 5 shows
the parameter combinations leading to decohesion.
For clarity, only the steady-state results are shown, though
the trends found with the transient analysis are exactly the
same as in Section IV-B2. Most of the trends follow those
of Fig. 4, for the case of . At low frequencies, the
required force approaches infinity, and at the first and third
natural frequencies, the required force drops nearly to zero.
However, with this new load location, there is no drop near
the second natural frequency. This occurs because the load
location coincides with a vibration node for the second mode.
The system is being forced to displace at its midpoint, though
a purely second mode response cannot have a displacement at
its midpoint. As a result, all of the energy (work) flows into the
odd modes, which contribute little power to the system due to
phase differences, as explained via (23). In fact, the steady-state
only model predicts that an infinite force is required at the
second resonant frequency . This behavior is
an important consideration: if a point load drives a system at
the th natural frequency and is located at a node of the th
mode, no motion will be produced and desticking is unlikely.
Of course, transients from other modes may initiate release but
very high force levels would be required.
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Fig. 5. A parameter diagram showing the combination of the applied point
force and excitation frequency required to initiate debonding. Here the load is
applied at the node of the second vibration mode (at the center of the beam),
preventing debond initiation near the second resonance .

C. A Note on Damping

Throughout this paper, it has been assumed that the damping
can be represented with a linear viscous model. Moreover, the
results presented thus far are for a particular level of damping:

. Of course, the results will be a sensitive function
of both the damping mechanism and the level of damping .
The two primary sources of damping in this system are struc-
tural (viscous) [22] and squeeze film damping [23]. The latter
is nonlinear and arises from the air trapped between the beam
and the substrate. This is particularly important near the crack
tip where the Knudsen number may be large [24]. Nonethe-
less, throughout this paper, we maintain a simply linear, vis-
cous damping model. This is justified by the fact that as one
moves away from the crack tip, the Knudsen number should
drop quickly. This implies that the squeeze film damping is a
localized phenomenon that is probably not dominant. In addi-
tion, the simple viscous model permits closed-form solutions.
These analytical solutions allow us to make direct connections
between physical mechanisms and the response of the system.
The level of damping has been fixed at , which is an
appropriate level of traditional structural damping. Other works
[22], [23] suggest that a much larger damping value is physically
reasonable in MEMS applications. But regardless, the specific
value of damping will only change the behavior quantitatively,
not qualitatively (provided ).

This brief discussion of the assumptions underscores the need
to obtain reliable experimental damping measurements for a
particular device prior to using the vibration release technique
proposed here. Such tests are currently being developed by the
authors for the cantilevers described in Section II.

D. The Beam With a Uniformly Distributed Load

Fig. 6 shows the parameter combinations leading to
debond initiation for a uniformly distributed, harmonic excita-

tion over the range . At low frequencies, the re-
quired force rises to infinity due to the compressive load. Again,
the required load drops near the first resonant frequency. As
the frequency is increased past resonance, the required force in-
creases but drops again near the second and third resonant fre-
quencies. This is altogether similar to the point load case.

Another anomaly may occur in this loading scenario. Con-
sider applying a uniform load across the entire unstuck length

. Here, the load is being applied symmetrically about
the midpoint. In this case, one should expect no drop in the re-
quired force near the second natural frequency. This occurs be-
cause the symmetric load cannot excite the asymmetric second
mode. As a result, the second mode (or any asymmetric mode,
for that matter) cannot be excited by this particular load distri-
bution.

E. Minimum Required Force Amplitudes

Based on the results presented in Figs. 4–6, it is clearly ad-
vantageous to excite the system near a resonant frequency. No-
table exceptions include driving the system near a vibration
node or trying to excite asymmetric modes with symmetric load
distributions (and vice versa). But in the absence of these un-
usual cases, an obvious question arises: is there a preferred res-
onant frequency? To answer this, focus on the steady-state so-
lution. The dynamic moment at the crack tip, which drives the
debonding, is

(24)

The quantities and
increase with successive modes. Thus for a fixed value of ,

the term will decrease, causing to increase simultane-
ously. increase with “ .” So the denominator increases with
successive resonances. Hence, at higher resonances, the contri-
bution from the moment to is smaller and debonding is less
likely. Put another way, the amplitude of the steady-state mo-
ment will always decrease with each successive mode, thereby
decreasing the energy fed to the crack tip, inhibiting the release
of stiction failed beams. While there is a benefit to driving the
system at any resonant frequency, exciting the component at
its lowest (i.e., its fundamental) frequency yields the smallest
forcing amplitudes and, hence, is optimal.

F. Numerical Subtleties

As indicated earlier, the number of modes required to assure
a converged solution depends on the type of load and where it
is applied on the structure. For cases where more modes are re-
quired (e.g., in excess of ten), certain subtle numerical difficul-
ties can arise. Specifically, the higher beam modes depend sensi-
tively on the number of significant digits retained in the constant
parameters , , and ; see [19]. At least double precision
accuracy is required in , , and to ensure that the higher
mode shapes (through the fifteenth mode) satisfy the boundary
conditions at the right end . This is particularly impor-
tant in this paper, since the crack resides at the right end of the
beam (i.e., at ). If the appropriate boundary conditions are
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Fig. 6. Two parameter diagrams showing the combination of the applied distributed force and excitation frequency required to initiate debonding. (a) The load is
applied over a portion of the beam and (b) the load is applied over the entire beam; symmetry prevents the second mode from being activated.

not enforced, the predicted force required for debonding will in-
evitably be wrong.

V. DISCUSSION

A. Experimental Evidence and Directional Dependence in
Frequency Sweeps

The theoretical results presented in this paper suggest that
structural vibrations may be used to achieve successful stic-
tion repair of MEMS components. The fundamental mechanism
driving this repair process is resonance. This is supported by the
experimental results presented in Section II. The first set of tests
involved an s-shaped beam with an initial unstuck length of ap-
proximately 900 m. This has a corresponding first natural fre-
quency of approximately 21 kHz (132 krad/s). The frequency
underwent an increasing sweep from 2.6 to 400 kHz with a
load per unit length of approximately 0.1372 N/m. During this
sweep through resonance, the beam partially unstuck from the
substrate, i.e., the unstuck length grew but total release was
not achieved. The beam was then restuck, such that the unstuck
length was again approximately 900 m. Now a decreasing fre-
quency sweep was applied from 400 to 2.6 kHz at the same load
level. Here complete repair was achieved. This repeatable di-
rection dependence may be explained in terms of resonances.
During the increasing sweep, partial repair was achieved by
passing through the first resonance. The decreasing sweep is
rather different. As the system passed through the fundamental
resonance (near 21 kHz), debonding began, the unstuck length
grew, and the fundamental frequency decreased to
some new value . As the downward sweep continued,
the new fundamental resonance was encountered, permitting
further peeling of the beam from the substrate. This process con-
tinued until total repair was achieved, as seen in Fig. 3(b).

A second set of tests were conducted in the megahertz range
with a square wave. Only partial repair was achieved. If one
takes a Fourier series view of the square wave, it is evident that
numerous frequencies (beyond the dominant square wave fre-
quency) are at play here. As a result, it is difficult to identify
clearly whether a single resonance or a variety of resonances
were responsible for this partial repair. However, this may be
desirable; by intentionally using a square wave, the user spreads
vibrational energy through various modes simultaneously. This
increases the likelihood that at least one resonance will be en-
countered during a sweep.

B. Behavior at the Crack Tip: Crack Closing and
Frictional Sliding

The analytical model (Section III-A) provides a physics-
based framework for understanding the vibration release
process. However, two pieces of physics were notably absent
from this model: crack closure and frictional sliding.

As the beam is driven, it oscillates about the deformed
(s-shaped) equilibrium position . During these oscilla-
tions, the material just to the left of the crack tip may contact
the substrate. As such, the unstuck length may vary between
its equilibrium value, dictated by , and some shorter
length, prescribed by the amplitude of the oscillation. This be-
havior is not accounted for in the present model. The following
argument demonstrates that this change in the unstuck length is
small and, as a result, may be ignored without significantly af-
fecting the results. The change in will scale with the response
amplitude, which is amplified near resonance. So conceivably
this effect will be most pronounced near resonance. So consider
the resonant condition . Using just the first mode,
the response amplitude (the maximum deformation) is super-
posed on the equilibrium position . The result is shown in
Fig. 7. This clearly shows that a portion of the beam would have
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Fig. 7. A diagram showing the spatial envelope of the motion at resonance
(equilibrium given by the dashed line). The inset clearly shows that the relative
amount of crack closure during vibration is small .

to be compressed into the substrate (though the model does not
account for the reaction force back on the beam). It is critical
to note that this region is very small and spans approximately

. In short, this is limited to 0.5% of the beam’s
length. If larger vibrations occurred, one might have to begin
accounting for this contact with the substrate.

Another physical mechanism not described here involves fric-
tional slippage at the interface. Throughout this paper, it has
been assumed that mode I crack propagation (peeling of the
beam from the substrate) is the dominant physical mechanism.
However, it is possible that mode II crack propagation may
occur; this corresponds to relative sliding between the two con-
tacting surfaces. Mode II slipping is apt to occur if the beam is
subject to a sizeable uniform axial load. Previous analyses of
stiction-failed cantilevers have demonstrated that axially, loads
arising from nonlinear coupling between vertical and horizontal
displacements are relatively small [4]. More significant axial
loads are generated at elevated temperatures. In this case, the
axial stress promotes slip at the contact interface. In a recent
study using beams similar to the ones considered here, thermal
buckling occurred prior to observable slip [16]. This experi-
mental observation supports the notion that mode I crack ad-
vance is the dominant mechanism. While the crack tip stress dis-
tribution undoubtedly involves mode II components, previous
success with a mode-independent interface energy implies there
is little evidence that a mixed-mode fracture approach is neces-
sary to predict failure. This is a consequence of i) the mode I
component being larger due to out-of-plane deflection and ii)
the toughness increasing significantly with mode-mixity.

VI. CONCLUDING REMARKS

This paper explores a novel approach to stiction release using
a beam vibration model in conjunction with a dynamic fracture
model. This coupled model is then used to make predictions
about what parameter combinations lead to the initiation of de-
cohesion, where the beam begins to peel off of the substrate.

Using this model, critical combinations of the excitation fre-
quency and force level , which initiate debonding, have
been identified. It is clearly demonstrated that when the exci-
tation frequency is near any natural frequencies of the adhered
beam, the required force is reduced significantly. However, there
are distinct regions in between the resonant frequencies where
a harmonic excitation may be less effective than a static force
(pulling on the beam). The cause of this behavior is the phase
response of the system; in between resonances the response is
either in-phase or 180 out-of-phase with the excitation. As a
result, minimal power is delivered to the beam to initiate the de-
cohesion process.

Also, the presence of vibration nodes limits the effectiveness
of this method of release. For example, if a harmonic point load
is applied at , the load location must not correspond to a
node in the th mode. This would result in no steady-state mo-
tion at the load point, which would inhibit the peeling process.
Of course, transient behavior may still be sufficient to initiate
peeling. Finally, though excitation near any resonant frequency
reduces the force required to initiate decohesion, it is also shown
that this benefit decreases at higher frequencies. This implies it
is best to excite the system near its fundamental (lowest) natural
frequency.

APPENDIX

The static energy release rate is defined by

where is the width of the beam and is the strain energy. The
latter term comes directly from Euler–Bernoulli beam theory

So to evaluate the energy release rate, one must integrate the mo-
ment (obtained from the lateral deflection ) and then differ-
entiate the strain energy. Instead of carrying out these two steps,
the fundamental theorem of calculus may be used. This says
that if , then

. Using this with our two above equations gives

which is exactly the same expression as the second term in (14)
for the zero crack speed case .
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