MCB5472 Computer Methods in Molecular Evolution **Preliminary** Outline

Date	topic
1/22	lect/lab: Overview; projects; Intro to Unix, connecting to cluster, intro to perl
1/27	lect: Jill Wegrzyn (Bioinformatics specialist, UConn Biotech center): cluster etiquette, how to
submit	jobs; intro to NCBI and other data resources
1/29	lab: downloading data from NCBI; into to perl part #2
2/3	lect: Primer on genome sequencing and assembly
2/5	lab: basic genome statistics; determining genome quality
2/10	lect: Types of homology; BLAST
2/12	lab: command line BLAST to compare genomes #1; parsing tabular data
2/17	lect: Homology continued; PSI-BLAST; HMMs
2/19	lab: command line BLAST to compare genomes #2; parsing tabular data
2/24	lect: Gene prediction, structure, annotation; orthology databases (COG, KEGG, Pfam, GO)
2/26	lab: genome annotation using public resources
3/3	lect: Sequence alignment (needle, clustalw, muscle, mafft, sate)
3/5	lab: Sequence alignment
3/10	lect: Review session
3/12	lab: midterm
	G BREAK
3/24	lect: approaches to phylogenetic reconstruction
3/26	lab: strand bias, oligo nucleotide frequencies
3/31	lect: Bayesian approaches, bipartition paradox, spectral decomposition
4/2	lab: comparing genomes: gene plot, mummer, average nucleotide identities (ANI) and
4 /7	tetramer usage using J-species
4/7	lect: Types of selection (dN/dS)
4/9	lab: phylogenetic trees, phylip, phyml, raxml, MrBayes
4/14	lect: supertrees/supermatrix, gene families, in and out paralogs
4/16	lab: AU-test using consel, quartet decomposition, PyMOL and sequence conservation
4/21	lect: Student Presentations 1
4/23	lab: Extracting data from repetitive tasks
4/28	lect: Student Presentations 2
4/30	lab: Student Presentations 3 & 4

Grade: 30% midterm, 30% student project, 20% in class participation, 20% homework assignments