
2/18/2014

1

MCB 5472 Assignment #4:
Introduction to command line BLAST

February 12, 2014

Assignment feedback

• Everyone is doing very well!

• Most people lose marks because they have not
read the question close enough (e.g., not
handing in pseudocode for Assign. #2)

• Check that your output files match your input
and that they contain what you think they
should

Code hints:

• Filehandles should be in block capitols

open (INFILE, $ARGV[0]); # good

open (infile, $ARGV[0]); # less good

• Will work otherwise but not under “use
warnings” and “use strict” pragmas, i.e.,
sloppy code

Code hints:

• Align you code blocks properly

• Purpose: so you can intuitively see your code
logic

foreach $word (@array){

if ($word =~ /fox/){

print “found the fox”;

}

}

Code hints:

• When using pattern matching, you should always consider
possible exceptions in your input file

$line =~ /^>/; # match fasta header
$line =~ />/; # matches any line with a “>”
character
$line =~ tr/ACGT/TGCA/; # compliments high
quality sequence
$line =~ tr/ACGTacgt/TGCAtgca/; # compliments
high and low quality sequence
$line =~ /^[ACGT]/; # line starts with a
nucleotide
$line !~ /^>/; # any line not a fasta header,
accommodates degenerate bases: N, V, B, H, D,
K, S, W, M, Y, R

Code hints:

• “\s” means “any white space character”

• Includes:
“ “ # space
“\t” # tab
“\r” # return
“\n” # new line

2/18/2014

2

Code hints:

• Filehandles should be in block capitols

open (INFILE, $ARGV[0]); # good
open (infile, $ARGV[0]); # less good

• Will work otherwise but not under “use warnings”
and “use strict” pragmas, i.e., sloppy code

• Keep your tabs aligned
• Matching /^>/ vs />/
• tr/ATCG/TAGC/ vs tr/ATCGatcg/TAGCtagc/
• “\s” matches: “ “, “\t”, “\r”, “\n”

Command line BLAST

• We will be using BLAST+

• Need to run on the Biotechnology Center
server

• Preinstalled on Biolinux so can be run locally

• Two parts to every BLAST
1. Format the BLAST database
2. Perform the BLAST itself

Formatting a BLAST database

• [jlklassen@bbcsrv3 ~]$ makeblastdb -in [name of
input file] -dbtype [either ‘nucl’ or ‘prot’]

• e.g., [jlklassen@bbcsrv3 ~]$ makeblastdb -in all.fna -
dbtype nucl

• Produces:
• nucleotide: [name].nhr, [name].nin, [name].nsq
• protein: [name].phr, [name].pin, [name].psq
where [name] is whatever was entered for the makeblastdb -in flag

• For help: [jlklassen@bbcsrv3 ~]$ makeblastdb -help

Running BLAST

• [jlklassen@bbcsrv3 ~]$ blastn –
query [query file name] –db
[database name]

• e.g., [jlklassen@bbcsrv3 ~]$ blastn –
query NC_018651.fna –db all.fna

• For other BLAST flavors: replace blastn with
blastp, blastx, tblastn or tblastx

• For help: [jlklassen@bbcsrv3 ~]$
blastn –help

• Multiple fasta file can be used as query
• multiple BLAST outputs in the same output file

Other helpful BLAST options

• –evalue [maximum evalue threshold]

• –out [output file name]

• –outfmt [0 for normal alignment format;
7 for easy to parse table format]

2/18/2014

3

Tabular output format

• Separated by tabs (“\t”)

@blastline = split “\t”, $line;

This week: Question #1

• Last week’s complete genomes each had
plasmids

• Are the plasmids from each organism with a
complete genome homologous?

• Are the plasmids present in any of the draft
genome sequences?

Practically:

• Use BLASTn to compare plasmids with each
other

• Use BLASTn to find homologous sequence to
each plasmid type in the draft genomes

• Use your judgment to infer homologs – this is
ultimately subjective and needs to be
defended!

• YOU DO NOT NEED TO WRITE PERL
SCRIPTS FOR THIS (unless you want to)

This week: Question #2

• Find paralogous genes and proteins in the
complete Escherichia coli O104:H4 str.
2009EL-2050 genome and its plasmids

• Compare number of gene and protein paralogs

• Tabulate paralog age estimated from their
percent BLAST similarly

Practically:

• Download the genes from NCBI

• BLAST all genes & proteins against each other
using blastn and blastp (respectively)

• Round percent identity to the nearest 10% and
tabulate

0

2

4

6

8

10

12

14

16

100 90 80 70 60 50 40 30

% ID

of
paralogs

Rounding in perl is not trivial

• int: truncates decimals to integers
print int(1.4); # returns 1
print int(1.6); # returns 1

• So to round:
(1) Divide to convert to a decimal
(2) Add 0.5
(3) Apply int
(4) Multiply to revert divide

$number1 = 19;
print int($number1/10+0.5)*10; # returns 20
$number2 = 11;
print int($number2/10+0.5)*10; # returns 10

2/18/2014

4

Discuss: how will we tabulate
rounded %IDs
%tabulated_IDs = (

100 => “”, 90 => “”, 80 => “”,

70 => “”, 60 => “”, 50 => “”,

40 => “”, 30 => “”, 20 => “”,

10 => “”, 0 => “”,

); # set up output hash

$rounded_ID = int($blast_table[2]/10+0.5)*10; # perform rounding

$tabulated_IDs{$rounded_ID}++; # tabulate in output hash

or:

$tabulated_IDs{$rounded_ID} = $tabulated_IDs{$rounded_ID} + 1;

same thing as above

To submit for next week

• Your conclusions from your results and your
justification of them (esp. question #1)

• Your scripts and/or representative terminal
commands

• detailed enough that I can reproduce your results

• You don’t have to submit input files or
pseudocode

