
3/21/2014

1

MCB 5472 Assignment #6:
HMMER and using perl to perform

repetitive tasks
February 26, 2014

One note about assignment #5

• Something we didn’t talk about last week in
class:

• I showed code skipping lines after the first (best) hit
was found in the BLAST output

• Really, you should have done this for both BLAST
outputs

• If you made 2 hashes, one for each BLAST output,
you are probably OK

• Else you have to make a second hash just so you
can skip found lines in the second outfile

open (INFILE1, $ARGV[0]) or die;

open (INFILE2, $ARGV[1]) or die;

while ($line = <INFILE1>){

@array = split “\t”, $line;

next if ($hash1{$array[0]});

next if ($array[3]/$array[10] < 0.7);

next if ($array[3]/$array[11] < 0.7);

$hash1{$array[0]} = $array[1];

}

while ($line = <INFILE2>){

@array = split “\t”, $line;

next if ($hash2{$array[0]});

next if ($array[3]/$array[10] < 0.7);

next if ($array[3]/$array[11] < 0.7);

$hash2{$array[0]} = “found”;

if ($hash1{$array[1]} eq $array[0]){

$count++;

}

}

print “$count RBHs found”;

This week

• You have 2 weeks to complete this
assignment!

• Central concept: you can use perl to automate
repetitive computations

• Will also demonstrate how to use HMMER to
create and use HMMs

Perl system command

• system is a perl command that runs terminal
commands from inside a perl script

e.g., system “cat file1.faa file2.faa > both.faa”;

• Advantage: can make the filenames in these
commands variables and run them inside a loop

e.g., system “cat $file1 $file2 > both.faa”;

Input

• The key to making these types of loops is
having input files containing filenames so that
you can process them one after the other

• e.g., tables with multiple columns, each containing
a filename

• e.g., a list of files generated at the terminal
• ls *.faa > files.list

• Names don’t even have to match exactly, just close
enough that you can make exact matches with
regular expressions

3/21/2014

2

Today’s exercise

• For each RBH pair from last week:
• Combine both sequences into a single file
• Create a multiple sequence alignment using muscle
• Create a HMM using HMMER3
• Search the other 5 draft genomes using that model
• Count the hits

• 4000-5000 times total! With only a few lines of
code (trust me)!

Step #1

• Modify your RBH script to make a table having
orthologs on the same line separated by a tab

• allows you to extract the filenames for further
analysis

Step #2

• Convert the protein multiple fasta files into
individual using the terminal command seqret

• Part of the EMBOSS package (very useful!)
• Syntax: seqret –auto –ossingle all.faa
• Output: lots of files looking like
yp_006768836.1.fasta

• Note: small letters
• Note: version number maintained (in gi header)

Step #3

• Concatenate all of the protein faa sequences
from the 5 E.coli draft genomes into a single
file using cat

• syntax: cat *.faa > all.faa

Everything after this is
looping in a perl script

Load your RBH filename table as the input file

Use “system” to invoke terminal commands

Step #4

• Extract filenames from the input table using
regular expressions

• To match the seqret output:
• Keep the version number
• Use small letters
• Add “.fasta”

• Note on regular expressions and NCBI fasta
headers:

• The “|” means “or” in a regular expression
• If you want to match this, you need to precede it with a

forward slash, e.g., “\|”

3/21/2014

3

More regular expression fun

• You can capture text out of regular expressions
using round brackets

e.g., s/^gi\|(.+)\|/ # match everything
between the first two “|” characters

• Everything in the round brackets is kept in the special
$1 variable

• why you can’t start your variable with a number in perl

• Can do multiple times
• s/^gi\|(.+)\|(.+)\|/
• $1 contains what was between the first brackets
• $2 contains what was between the second brackets

Step #5

• Join your two RBH files into a single multiple
fasta file containing 2 sequences

• e.g., system; “cat $file1 $file2 >
both.faa”

Step #6

• Align the sequences in your multiple fasta file
using the program muscle

• Syntax: muscle –in [both.faa] –out
[both.muscle.faa]

• Note: muscle outputs aligned fasta files

Step #7

• Use your sequence alignment to create a HMM

• Syntax:
hmmbuild [both.hmm] [both.muscle.faa]

hmmpress [both.hmm]

Step #8

• Query the multiple fasta file containing all of
the proteins from the 5 draft genomes with the
HMM

• Syntax: hmmscan --tblout [table.out]
–o [hmmscan.out] [both.hmm]
[all_drafts.faa]

Step #9

• Parse hmmscan output file and count number
of orthologs

• Consider length and similarity thresholds to
use considering the results of assignment #4
looking for paralogs

• It is possible to have >5 orthologs (poor
genome quality)

• Keep a running total of ortholog counts (hash
table like assignment #4)

3/21/2014

4

Important hint:

• Run through your script once placing die at
the end of your main loop

• make sure everything works before running through
~25,000 commands

