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Lecture 2 Feb 3/14

(1) GenBank continued

(2) Primer: Genome sequencing
and assembly

Dr. Margaret Belle (Oakley)
Dayhoff
March 11, 1925 — February 5, 1983

Among other things, we owe her
the first nucleotide and protein data =
bank, the PAM substitution matrix, =
and the single letter amino acid
code. (Image from wikipedia)

Atlas of Protein Sequences 1972 (cont)
Contained phylogenetic reconstructions that went back in time to far
before the Last Unversal Common Ancestor (LUCA) aka the cenancestor
of all living cellular organisms alive today.

tRNA phylogeny
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Genbank

Founded in 1982 at the Los Alamos National Laboratory

Initially managed at Stanford in conjunction with the BIOSCI/Bionet news groups

1989-92 transition to the NCBI on the east coast

One precursor was Margaret Dayhoff’s Atlas of Protein Sequence and Structure

In 1987 genbank fit onto a few 360 KB floppy disks.

Genbank uses a flat file database format (see http://en.wikipedia.org/wiki/Flat file_database)

NCBI does not use a relational databank (as in Oracle, peoplesoft)

« NCBI stores data in ASN.1 format (@4 36008sia.org/wiki/abstract_syntax_Notation_One),
which allows to hardwire crosslinks to other data bases, and makes retrieval of related
information fast.

* NCBI's sample record ( nim.nih.
to most the fields used in the gbk flatfile.

* In the genbank records at NCBI the links connect to the features (i.e. the pubmed

record, or the encoded protein sequence) --- not easy to work with.

html) contains links

Atlas of Protein Sequences 1972 (cont)

The Atlas also contained RNA sequences, and PAM matrix for nucleotides
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Relational vs flat-file

w I

NAME TELEPHONE  ADDRESS
5. Claus 0203 450 The North Pole. Lapland
M. Maouse 0202 453 Disneyworld, Flosida

A Moonman 0104 459 Craterland, Thie Moon

(B)  GenBank Flat-File Format




data tables

Protein-code  Protein-name Length Species-origin
P1001 Hemoglobin 145 Bovine
P1002 Hemaoglobin 136 Owine

P1003 Eye Lens Protein 234 Human

Protein-code  Protein-sequence
P1001
PI002
P1003

SQL can be used to connect/join and search tables

Example: Gl numbers ->sequence and Gl numbers to taxonomic information
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Taxonomy at the NCBI

» The taxonomy browser at NCBI is well
maintained and useful, despite sometimes
using strange labels (domains are labeled as
superkingdoms)

» The taxonomic categories are linked to
available sequences (genomes, proteins,
nucleotide)

* The FTP site at the NCBI is a taxonomic

wasteland: the archaeal genomes are stored
in the folder labeled Bacteria.

To obtain a CDS from a gene at NCBI

Click on the CDS you
are interested in

To obtain a CDS from a gene at NCBI

Keep in mind for later!

Click on the FASTA link

To obtain a CDS from a gene at NCBI

[r— 1+ Note that the header indicates that
this is only part of the genbank

e semen — rusta | €NEry, the rest of the annotation line

0 meg e ween IS fO the original entry

w.m,:nj/mui.ua. TCP1-beta gene, partial cds; and Axi2p |

(AXL2) and Rov7p/(REVT) gones, complete cds

P —

To obtain a CDS from a gene at NCBI

N Meonnt 5 e Do = s WO S D
Heaesitin (=== =
L At i
et Bt Fan TS
T S i T Note that the sequence is from
P T T E— litaiang the non-coding strand, to get
? NECOTIE S - 2 gens, parkal ode; and g 1o complement click here

(AXL2) and RovTp (REVT) genes, complete cds

Ganfiar




To obtain a CDS from a gene at NCBI

Conglay Saings; = FASTA Serat
10 Showing 74 b region b base 300 1 4337 Charege rogien shown

Saccharomyces cerevisiae TCP1-beta gene, parti| P1ace check mark here t-il v

4zt

{AXL2) and RevTp (REVT) genes, complete cds ——
Gandan Ll t
And update view
fomtomize view -
g Vi

ATGAMIACOTGASAGTATTTTTGOATCTTTSTTTTAL

Columns:

1:SeqID  6: Score

2: Source  7: Strand

3: Type 8: Phase

4: Start 9: Attributes (itself subdivided)
5: End

Cost per Raw Megabase of DNA

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
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gff (Genome Feature Format)

* A compact tabular annotation format,
especially common for larger eukaryotic
genomes

» Does not include sequences

» An input file type for many genomics
programs (particularly sequence viewers)

Genome sequencing and
assembly: a primer

Analyses are only as good as their
input data...

Changes in instrument capacity over the past decade, and the
timing of major sequencing projects

ER Mardis. Nature 470, 198-203 (2011) doi:10.1038/nature09796

nature




lumina

- a m

15GB; 2x300bp; ~$100K; ~1d 120GB; 2x150bp; ~$250K; ~1d

1TB; 2x125bp; ~$740K; 6d  18TB; 2x150bp; $10M; 6d

http://wwwllumina.com/systems.ilm;

2/3/2014

Why it matters

+ How a genome was sequenced matters
for molecular evolution studies
— Different sequencing methods have different
error profiles

— Different sequencing methods require
different assembly methods, each with
different biases and error profiles

Sanger sequencing

it

|

I

http://en.wikiped /wiki/File:Sanger- ing. htty ikipedi

Sanger sequencing

 High quality, especially because often
manually examined

» Low throughput, high cost
» Read lengths 900-1000bp

« Still gold standard method for DNA
sequencing (and most common!)

454
sequencing

. * Introduced in

2005

"+ Moderate

throughput, cost

.+ Upto~700bp
read lengths

* Homopolymer
errors
problematic
—e.g., “AAAAA” vs

Mardis (2008) Ann, Rey, Genom Hum, Gepet, 9:387.40;

Overlap/layout/consensus
genome assembly
1. Compare all reads to each other to find
those that overlap

2. Create overlap graph arranging reads
according to their overlaps

3. Find unique path through the graph

4. Assemble overlapping reads by aligning
the reads and deriving consensus
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Overlap/layout/consensus
genome assembly

A TGGCA B TGCAAT
GCATTGCAA
Reads TGCAAT GCATTGLAR ATTTGAC
CAATT
ATTTGAC ool

Consensus L
Sequence TGGCATTGCAATTTGA:  TGGCA

Nodes: reads

Edges: alignments

Only one unique path

Leverage alignment probabilities

http://gcat. davidson.edu/phast/index.htm!

Overlap/layout/consensus
genome assembly

* Requires all-vs-all comparison of reads
— becomes computationally intensive as the
number of reads increases
» Developed and applied for Sanger and
454 sequencing

lllumina sequencing

Introduced
2006

» Short reads
« High
* throughput

Substitutions
are main error

Hlumina Sequencing Technology

http: org/i 7/76/BMC_lllumi Il.png

De Bruijn graph assembly

+ Instead of comparing all reads with each
other, split reads up into kmers
—i.e., subsets of each read of a given length

k=4

TGGCA TGGC, GGCA
GCATTGCAR GCAT, CATT, ATTG, TTGC, TGCA, GCAA
TGCAAT TGCA, GCAA, CAAT
CAATT CAAT, AATT

ATTTGAC  ATTT, TTTG, TTGA, TGAC

http://gcat.davidson.edu/phast/index html

De Bruijn graph assembly

+ Draw a graph of kmer overlap
» Find unique path through graph

— Leverage A T eamiacin
kmers next " b
ATTTGAC
to eaCh Consensus AT
other Sk ToCRATEE -
e
in reads

http://geat.davidson.edu/phast/index.htm!

De Bruijn graph assembly

* Doesn’t need all-vs-all comparison so is
much faster

+ Can handle large numbers of reads, e.g.,
as generated by lllumina technology

» Graph is much more complicated, RAM
intensive

* More sensitive to errors
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Other technologies PacBio sequencing

« SOLID: different technology but similar
data to lllumina, i.e., short reads, high
throughput

* lon Torrent: different technology but similar
data to 454, i.e., moderately long reads,
moderate throughput, homopolymer errors

Metzker (2010) Nat. Rev. Genet. 11: 31-46

) ) Trade off between read length & throughput
PacBio sequencing o
- S e -

+ Single molecule (no PCR needed) *® g
+ Long reads (up to 30KB) . ;/.
. &

=

+ Can read modified bases
 High error rate (~12%), mostly
substitutions
— Can overcome using high coverage =

+ Assembly via overlap/layout/consensus o~
methods " R

Gigatries per run fog scale)
-

]
B
g

Lex Nederbragt (2013): developments in NGS. figshare. http://dx.doi.org/10.6084/m9 figshare.100940.

Why is read length important? Define: contig

» Consider a genomic repeat + Acontig is a stretch of DNA without any
— Each repeat is larger than the read length gaps
— Where should reads inside the repeat be » The result of sequencing read assembly
placed?
— OR: who do you chose between loops in the \f\u"i
De Bruijjn graph? ,_‘_._;m’

http://geat.davidson.edu/phast/index.html




How do assemblers respond to
repeats that they can’t resolve?

» Break the graph into multiple contigs

* Some reads are never included in draft
genomes

* Lowers genome quality

http://gcat. davidson.edu/phast/index.htm|
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Does it matter? Are real
genomes too complex to
assemble using short reads?

Experiments using simulated
reads from model genomes

Unique Reads U (%)

15 20 5 10 15 20
Read Length /(1) Read Langth { (1)

« As read lengths increase, more of the genome becomes unique
* Reads from real genomes (solid lines) do not become completely
unique

— Dashed is random reads for same sized genome
Whiteford, N. et al. (2005) Nuc. Acids Res. 33, e17:

C. elegans
« Still unassembled e
at 100bp

10 20 30 40 S50 60 70 80 90 104
Read length { (n1)

Whiteford, N. et al. (2005) Nuc. Acids Res. 33, e17-

E. coli
+ Eachline is % 10 ?/3
H . 1000

_cont|gs > that size il

in bp 5 ]
* E.coligenomeis = sl

~4.6 Mbp ;" 50 100000 ]
« Still far from §

complete assembly adoo ]

at 200bp = 1
* Assembly largely in

gene-sized ¢ 50 100 150 200

fragments Read Length /(1)

Whiteford, N. et al. (2005) Nuc. Acids Res. 33, e171]
C. elegans

« C. elegans genome "“,,]///—-—

size: ~100 Mb /
« Still far from } 1o ;

complete at 200 bp = /
» Gene sized ' ;

f 25| -~

ragments . s

reasonable (note : 2000001

_ oM
genes have introns EE GO

and so are larger)

Whiteford, N. et al. (2005) Nuc. Acids Res. 33, e171]




Human chromosome 1

« Dashed: chr 1 =

+ Solid: whole
genome

« Still many 125bp
reads that can’t be
uniquely mapped

Unique reads U (%)

Whiteford, N. et al. (2005) Nuc. Acids Res. 33, e17.
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Human chromosome 1

» Chr 1is 249 Mb

« Still far from
complete assembly
at 125 bp

* Gene-sized
fragments still
possible, but getting  * =
harder

% genome in contigs > listed size

100 125

Whiteford, N. et al. (2005) Nuc. Acids Res. 33, e171]

Problem

» Recall: Sanger sequencing has long read
lengths, but is low-throughput and
expensive

* lllumina etc. has short read lengths but is
high-throughput and cheap

* Lots of low quality genomes therefore
have appeared
— Short-read lllumina etc.

— Low coverage Sanger

One result: gene fragmentation

Number & % gene fragments Correlation with assembly quality (N50)
“1a . 5

Log N8 '
Klassen & Currie (2012) BMC Genomics 13:14]

Definition: N50

Order contigs from longest to shortest
* Sum lengths of all contigs

* N50 is contig size where you reach 50% of
the total assembly size

» Other analogous measures, N80 etc.

Gene fragmentation

» Can cause your gene to be missed

+ Confounds gene content analyses
— Some genes counted as duplicates
— Some genes falsely annotated




fragmentation

affects

different

n genes
” | nn__ differently

Klassen and Currie, BMC Genomics (2012) 13: 14

Gene
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One solution: increase read
length

Increasing read length is a focus of
several sequencing platforms (PacBio,
MiSeq)

— These especially (but not exclusively) target
bacterial genomes where they are most
effective

Not all technologies do this: less

applicable for counting applications (e.g.,

RNAseq) and resequencing

Definition: scaffold

+ Scaffolds are a series of contigs

connected by gaps
—i.e., an assembly of contigs

+ Often the gaps are of known length

Scaffold increase genome
quality
Allow some contigs to be merged
Often gaps are small limiting information
loss for a genomic region

Allow gross genome structure to be better
revealed

Gene fragmentation still exists because
contigs are still broken

lllumina
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Berglund et al. 2011 Invest. Genet. 2:23

Mate pair libraries

lllumina method:
. Biotinylate fragment
2. Circularize

3. Fragment, ligate
sequencing adaptors

4 & 5. Sequence from both

6. Reconstruct original
fragment computationally

Paired libraries

Provide sequence from 2 chromosomal regions

Paired-end: ~300bp apart

— Same principle as mate-pair but fancy PCR instead of
ligation (cheaper libraries)

Mate-pairs: at least 3kb, often 8kb, 20kb, 40kb

— Larger libraries span larger repeats, but can be tricky
to make

— Costly, lower throughput
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Paired libraries

* In de novo genome assembly, nearly all
read assemblers only use read pairing
information AFTER contig assembly during
scaffolding
— This is starting to change as algorithms

mature

* Read pairings are often used during read
mapping to a reference genome

Resequencing

« If you have a high-quality reference
genome already, it is often efficient to map
sequencing reads to that genome instead
of assembling it de novo
— Computationally more tractable (restricted

search space)
— Common for epidemiology, population-level
studies

» Caveat: you only get what you look for!

Other scaffolding methods

» Optical maps: create restriction maps of
chromosome, link to genome sequences
— Requires reasonable genome assembly to

start with

» Genetic linkage maps: more classical
experimental method of estimating gene
location, can be linked to genome
sequences

Outlook for sequencing

» Two themes:
— lllumina increasing throughput, often short
reads
* Most important for resequencing, counting
applications, clinical application
— PacBio is recently taking over the de novo
assembly niche
» Watch for Oxford Nanopore in this space soon

Discuss:

(1)What are some different errors
encountered during DNA sequencing?

(2)What effect do they have on molecular
evolution studies?

(3)What can be done to mitigate them?

10



