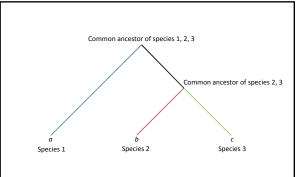
MCB 5472 Lecture 3 Feb 10/14

- (1) Types of homology
- (2) BLAST

Homology references

"Homology a personal view on some of the problems" Fitch WM (2000) Trends Genet. 16: 227-231

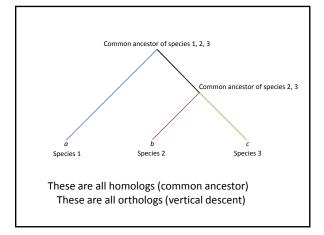

"Orthologs, paralogs, and evolutionary genomics" Koonin EV (2005) Annu. Rev. Genet. 39: 309-338

What is homology?

- Owen 1843: "the same organ in different animals under every variety of form and function"
- Huxley (post Darwin): homology evidence of evolution
 - Similarity is due to descent from a common ancestor

What is homology?

- Homology is a statement about shared ancestry
 - Two things either share a common ancestor (are homologous) or do not

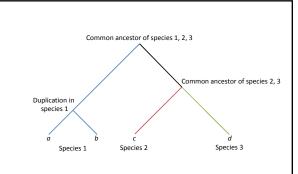

These are all homologs (common ancestor)

Ohno 1970: "Evolution by Gene Duplication"

- New genes arise by gene duplication
 - One copy retains ancestral function
 - Other copy diverges functionally
- "Homolog" as a single term therefore is a sloppy fit
 - What kind of ancestor to homologs share?

Fitch 1970: "Orthologs" and "Paralogs"

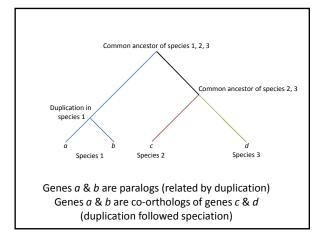
"Orthologs": genes related by vertical descent

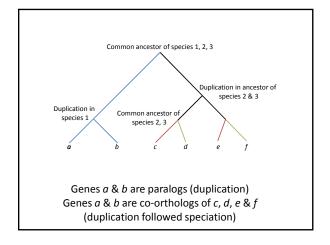


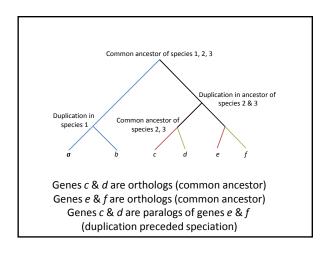
Homology and Function

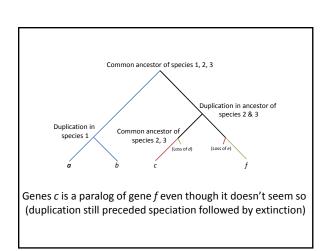
- Homology and function are two different concepts
- Strict orthology and functional conservation often correlate but this is not absolute
- Basis for annotating genomes based on similarity to previous work

Fitch 1970: "Orthologs" and "Paralogs"

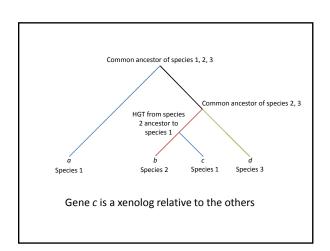

- "Orthologs": genes related by vertical descent
- "Paralogs": gene related by gene duplication




Genes a, b, c & d are homologs (common ancestor) Genes a & b are paralogs (related by duplication)

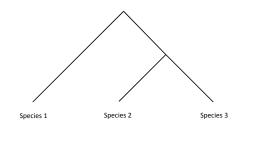

Orthology/paralogy is somewhat relative

- Depends on the depth of duplication relative to common ancestry
- "Co-orthologs": paralogs formed in a lineage after speciation, relative to other lineages (Koonin 2005)



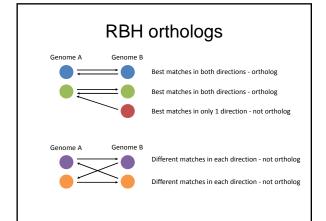
Xenologs

- Bacteria exchange DNA between distant relatives by horizontal gene transfer (HGT)
 - Increasingly recognized in eukaroytes too
- Gene tree does not match species tree



Other "-logs"

- Inparalogs: duplication follows speciation
- Outparalogs: duplication precedes speciation
- Synlogs: arising from organism fusion


- Orthology & paralogy can get quite complicated when multiple duplications happened at different moments in time
- Gene loss & HGT can always confound one often has to rely on external evidence to recreate speciation
 - E.g., other genes not thought to be horizontally transferred, average signal of multiple genes

Discuss: how are these genes related to each other? Three possibilities

How to determine orthologs

- Most detailed: phylogenetic trees
 - Can be computationally expensive
- Reciprocal BLAST hit (RBH/BBH)
 - Simplest, computationally cheap, less accurate & more complicated with many genomes
- · More complicated RBH clustering
 - OrthoMCL, Inparanoid

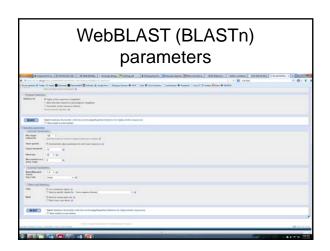
BLAST

- Standard method to identify homologous sequences
 - Not for comparing two sequences directly; use NEEDLE instead for this (global vs. local alignment methods)
- Requires database to query sequence against
- Probably the most common scientific experiment

Different BLAST types

- BLASTn: nucleotide vs nucleotide
- BLASTp: protein vs protein
- BLASTx: protein vs translated nucleotide
- tBLASTn: translated nucleotide vs protein
- tBLASTx: translated nucleotide vs translated nucleotide
- Nucleotides translated in all six open reading frames

Implimentations


- blastall: older command line version
 - Atschul et al. 1990 J. Mol. Biol. 215:403-410
- BLAST+: newer command line version
 - Camacho et al. 2008 BMC Bioinformatics 10:421
 - Faster than blastall
- Web BLAST:
 - www.blast.ncbi.nlm.nih.gov/Blast.cgi
 - Web version of BLAST+

Databases

- All BLAST queries are done vs. a database
- Examples:
 - NCBI's "nr" queries against all of GenBank
 - WebBLAST has preformatted databases for different taxonomic groups, other NCBI divisions (e.g., Refseq, Genomes)
- Command line allows custom databases
 - e.g., lab genomes

WebBLAST (BLASTn) Input sequence Input sequence BLAST type Megablast optimized for short sequences vs. BLASTn

BLAST: Step 1

- · Break sequence into words
 - Protein: 2-3 amino acids
 - Nucleotide: 16-256 nucleotides

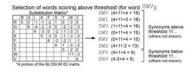
Ouery Sequence:
pq118519926 residues 412 to 594)
sq118519926 residues 412 to 594)
sgANFARQLEFERESQE TEAGUES TO THE SEQUENCE TO

- · Goal: exact word matches
 - Computational speedup

http://www.plosbiology.org/article/info%3Adoi%2F10.1371%2Fjournal.pbio.1001014

Substitution matrices

- Evolutionarily, some substitutions are more common than others
 - Some amino acids are common (e.g., Leu) and some are rare (e.g., Trp)
 - Some substitutions are more feasible than others (e.g., Leu -> Ile vs. Leu -> Arg)
- Substitution matrices therefore weight alignments by these probabilities


BLOSUM matrices

- Alignments of a set of divergent reference sequences
 - BLOSUM62: sequences 62% identical
 - BLOSUM80: sequences 80% identical
- Substitution frequency calculated for each reference set and used to derive substitution matrix
- Henikoff & Henikoff (1992) PNAS 89:10915-10919
- Also: M. Dayhoff's PAM matrices from 1978

BLAST: Step 2

 Use substitution matrix to find synonymous words about some scoring threshold

nttp://www.plosbiology.org/article/info%3Adoi%2F10.1371%2Fjournal.pbio.1001014

BLAST: Step 3

- Find matching words in the database
- Extend word matches between query and matching sequence in both directions until extension score drops below threshold
 - First without gaps

http://www.plosbiology.org/article/info%3Adoi%2F10.1371%2Fjournal.pbio.1001014

BLAST: Step 4

 If initial alignment good enough, redo with gaps and calculate statistics

http://www.ploshiology.org/article/info%3&doi%2F10.1371%2Figurnal.phio.100101

BLAST score

$$S = \left(\sum_{\substack{\text{Sum of scores from distance matrix}}} M_{ij}\right) - cO - dG$$

$$= \left(\sum_{\substack{\text{Sum of scores from distance matrix}}} M_{ij}\right) - cO - dG$$

$$= \left(\sum_{\substack{\text{Formal Pen-Interval of gaps of scores from distance matrix}}} M_{ij}\right) - cO - dG$$

Gap opening penalty typically significantly larger than gap extension penalty

Why?

Questions:

- 1. Why do gap opening and extension penalties differ?
- 2. Why is BLAST a local aligner vs. global

Local alignment

- Sequence extensions do not necessarily extend to sequence ends
 - Domains vs entire proteins
- Can be multiple query->reference matches
 - i.e., alignment can be broken, each with own statistics
- Can be multiple reference matches to the same query

Sequence masking

- Low-complexity regions can arise convergently
 - Small hydrophobic amino acids common in transmembrane helices
- Violates homology assumption, therefore often excluded from BLAST search

Comparing BLAST scores

- Different BLASTs can use different parameters, e.g., matrices & gap penalties
- "Bit scores" normalize for this

$$S' = \frac{(\lambda S - \ln K)}{\ln 2}$$
Bit score
$$\int_{\text{Matrix penalty}} \int_{\text{penalty}}^{\text{Gap}} \int_{\text{penalty}}^{\text{Gap}}$$

E-values

- What is the likelihood that the sequence similarity is due to chance vs. actual homology?
- Larger databases are more likely to include chance matches

E-values

Length of the query sequence
$$E = (n \times m)/(2^{S'})$$
 E-value
$$Total \# of residues in the database$$

E-values

- The E-value represents the likelihood of a random match >= the calculated score
- Smaller E-values therefore reflect greater probability of true homology
- Typically 1e⁻⁵ operationally used as a threshold for considering sequences as homologous

Summary

- Wednesday: applying BLAST
- Next week: expanding from one->many sequence comparisons to many->many