MCB 5472 Lecture #6: Sequence alignment March 27, 2014

Sequence alignment

- As you have seen, sequence alignment is key to nearly all experiments in molecular evolution
- Thus far we have discussed local alignment as implemented in BLAST
- Global alignment:
 - Aligns sequences over their entire length
 - Assumes that sequences for alignment are homologous

Recall from BLAST lecture:

- Sequence alignment is scored:
 - According to a substitution matrix
 - Some substitutions are more likely than others
 - Using affine gaps
 - Gap opening and extension are considered separately
 Reflects biological reality that
- Alignment score is the sum of substitution and gaps scores

Pairwise alignments

Needleman-Wunsch

- Needleman and Wunsch (1970) J. Mol. Biol. 48:443-453
- The first algorithm to computer the optimum alignment between two sequences using dynamic programming
 - i.e., examines many possible solutions and picks the best
- Implemented as EMBOSS needle program
- Global alignments: assumes sequences should be aligned over their entire lengths

Needleman-Wunsch

- Works by scoring alignments sequentially and evaluating scoring for each alignment position based on previous scores
 - Gaps in one position may force an unlikely substitution later on
 - Calculating these scores represents a dynamic programming sub-problem; computationally efficient
- Evaluates all possibilities but also maps the best option
 - Guarantees finding the best path according to the parameters used

Smith-Waterman

- Smith and Waterman (1981) J. Mol. Biol. 147:195-197
- Local alignment version of Needleman-Wunsch
- · Guaranteed to find the statistically best local alignment
 - BLAST only evaluates a subset of alignment possibilities
 - Implimented in FASTA search program

Multiple sequence alignment

Multiple sequence alignment

- Extending similar dynamic programming approaches to calculate all possible sequence alignments quickly becomes impossible
- Various tools therefore use different heuristic approaches to align multiple sequences • Different specializations and/or motivations
 - · Different computational efficiency

ClustalW

- One of the first widely used multiple sequence alignment programs
- Thompson et al. (1994) Nuc. Acids Res. 22: 4673-4680
- Larkin et al. (2007) Bioinformatics 23:2947-2948
- ClustalX: Widely used version with a graphical interface

ClustalW

- Step #1a: Align all pairs of sequences separately Current default: count kmers conserved between sequences
 - Can also be global alignments (original defaults)
- Step #1b: Calculate distance matrix from pairwise comparisons
- Step #2: Cluster distance matrix using neighbor-joining or UPGMA algorithms to create a "guide tree"
- Step #3: Midpoint root tree and weight branches
 by sequence similarity

ClustalW guide trees

- Guide trees are no substitute for full phylogenetic analysis!!!
- Not based on multiple sequence alignment
 Are only a rough approximation of the true relationships between sequences
- Even though they can be produced by ClustalW they should not be used for detailed analysis!

ClustalW

- Step #4: Progressive alignment
 - Starting from most similar sequences on guide tree, align each to each other
 - Uses full dynamic programming alignment methods (cf. N-W) including substitution and gap penalties
 - Gap opening parameters vary based on sequence position to favor alignment to preexisting gaps
 - Any gaps introduced are maintained during subsequent alignment iterations

ClustalW No guarantee of optimal alignment Early errors propagated to more divergent sequences This is true of all multiple sequence programs Reasonably accurate when all sequences are ~ <40% identical Scales reasonably well to a few thousand sequences Easy to run! Has been superseded by better programs

ClustalW command line

MUSCLE

- Edgar (2004) Nuc. Acids Res. 32:1792-1797
- Edgar (2004) BMC Bioinformatics 5:133
- Designed to improve speed and accuracy over older multiple sequence alignment programs like clustalw
- Now a preferred alignment method, especially for high-throughput studies

MUSCLE

- Stage #1: create draft progressive alignment
 Step #1-1: calculate distance between genomes
 - using kmers, create distance matrix
 - Step #1-2: cluster distance matrix into guide tree using UPGMA algorithm
 - Step #1-3: conduct progressive multiple sequence alignment
 - Accuracy sacrificed for speed at this step
- So far, same as clustalw but faster and less accurate

MUSCLE

- Stage #2: refine progressive alignment
 - Most inaccuracy in Stage #1 due to using kmer distances to create guide tree
 - Step #2-1: re-create distance matrix using Kimura distances (more accurate, need input multiple sequence alignment)
 - Step #2-2: cluster distance matrix using UPGMA
 - Step #2-3: recalculate progressive alignment, omitting alignments that stayed the same from Step #1-3
- Result: more accurate alignment than Stage #1

MUSCLE

- Stage #3: Alignment refinement
 - Step #3-1: moving from root to tip in the tree from step #2-2, remove that node and spit the alignment into two subalignments
 - Step #3-2: compute alignment profiles for each subalignment
 - Step #3-3: re-align profiles to each other
 - Step #3-4: determine if new alignment has a better score than the previous one, if so keep new one and goto step #3-1 using the next node in the tree
 Stop when scores stop improving

MAFFT

- Katoh et al. (2002) Nucl. Acids Res. 30:3059-3066
- Katoh & Standley (2013) Mol. Biol. Evol. 30:772-780
- Similar to MUSCLE, designed to improve speed and accuracy of multiple sequence alignment vs. clustalw

MAFFT

- Instead of progressive alignments, MAFFT uses a "fast Fourier transform"
 - Creates local alignment blocks based on physicochemical properties of amino acids (esp. volume & polarity)
 - Very fast!
 - Does not require calculating alignments exhaustively, rather how blocks link together
- Statistical framework the same for pairwise and multiple alignments

MAFFT

- Scoring system dramatically simplified relative to clustalw (uses complicated heuristic normalizations)
- Contains an optional iterative refinement method (similar to MUSCLE)
- Newer versions contain robust profile alignment methods (i.e., aligning alignments)
- Speedup and accuracy similar to MUSCLE

PRANK

- Loytynoja and Goldman (2008) Science 320:1632-1635
- Motivation: alignment programs typically group gaps together
 - Gaps represent insertion/deletion (indel) evolutionary events
- Result: multiple evolutionary events are grouped together

PRANK

- Progressive alignments using substitution matrices sequentially evaluates alignments on a column-by-column basis
- Individual columns by themselves lack sufficient information to accurately reflect evolution of the entire sequence
- PRANK evaluates gap conservation during alignment refinement to decide if the gap should be used during subsequent alignment steps

PRANK

- Better models of indel events
- Sequence alignments are not artificially compressed (i.e., shorter than true alignments)
- Computational cost

SATé

- Liu et al. (2012) Syst. Biol. 61:90-106
- Liu et al. (2009) Science 324:1561-1564
- Something different: performs alignment and tree estimation simultaneously

Which alignment method is best?

- Head-to-head analyses rarely cover all possibilities
- Depends on the expected output
 - E.g., comparison to reference alignment
 - E.g., effect on tree construction
 - E.g., effect on identifying site-specific selection
- Trade-offs: speed vs accuracy

Note: nucleotides vs. proteins

- Software exists to convert between protein and nucleotide sequences for alignment
- PAL2NAL <u>http://www.bork.embl.de/pal2nal/</u> Suyama et al. (2006) Nucl. Acids Res. 34:W609-W612
- MEGA6: GUI version http://www.megasoftware.net/ (2013) Mol. Biol. Evol. 30:2725-2729
 - Doesn't scale fantastically compared to terminal but user-friendly

Sequence masking

- Another way to deal with poor alignments is to remove regions thought to be inaccurate before further analysis
 - Lose information, but optimize sensitivity/specificity tradeoff
- Common for phylogenetic applications
 - Gaps are often used during phylogenetic reconstruction, so are better to remove if not actually informative
- Not entirely without controversy

Gblocks

- Talavera and Castresana (2007) Syst. Biol. 56: 564-577
- <u>http://molevol.cmima.csic.es/castresana/Gblocks.html</u>
- Identifies blocks of sequences aligned with high confidence
 - E.g., few gaps, few columns lacking sequence conservation, confidently-aligned flanking regions

GUIDANCE

 Penn et al. (2010) Nucl. Acids Res. 38:W23-W28

Cuelling (m) Day

- <u>http://guidance.tau.ac.il/overview.html</u>
- Create alignment guide trees based on alignment columns
- Score compared to master alignment

Summary:

- Choice of multiple sequence alignment
 program will affect downstream analyses
- Different trade-offs to approach
- No substitute for manual inspection and correcting alignments when the resulting phylogeny really, really matters!-