Sequences and Series

Quantitative Learning Center at the University of Connecticut

Sequences

A sequence is a list of numbers

$$\{a_1, a_2, a_3, \ldots, a_n, \ldots\}$$
.

The sequence *converges* if

$$\lim_{n\to\infty}a_n$$

exists. If the limit does not exist, then the sequence diverges. $| \bullet$ converges if p > 1 and

Series

A series $\sum a_n$ is the limit of the partial sums

$$s_n = \sum_{i=1}^n a_i.$$

If $\lim_{n\to\infty} s_n = \lim_{n\to\infty} a_1 + \cdots + a_n$ exists, then the series converges. It is a p-series with p = 1, so it Otherwise the series diverges.

Bookkeeping on indices:

$$\sum_{n=1}^{\infty} a_n = \sum_{n=2}^{\infty} a_{n-1} = \sum_{n=0}^{\infty} a_{n+1}.$$

Write a few terms to see why.

Special Cases

Geometric Series

When |r| < 1,

$$\sum_{n=0}^{\infty} ar^n = \frac{a}{1-r}.$$

When $|r| \geq 1$, this geometric series diverges.

Telescoping Series

The telescoping sum

$$s_n = \sum_{i=1}^n \frac{1}{i(i+1)}$$

$$= \sum_{i=1}^n \left(\frac{1}{i} - \frac{1}{i+1}\right)$$

$$= 1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \frac{1}{3} - \frac{1}{4} + \cdots$$

$$+ \frac{1}{n-1} - \frac{1}{n} + \frac{1}{n} - \frac{1}{n+1}$$

$$= 1 - \frac{1}{n+1}$$

has the limit

$$\lim_{n\to\infty} s_n = 1.$$

p-Series

The p-series

$$\sum_{n=1}^{\infty} \frac{1}{n^p}$$

- diverges if $p \leq 1$.

This follows from the integral

Example: Harmonic Series

The harmonic series

$$\sum_{n=1}^{\infty} \frac{1}{n}$$

diverges.

Test for Divergence

Given a series

$$\sum_{n=1}^{\infty} a_n,$$

$$\lim_{n\to\infty} a_n \neq 0$$

or doesn't exist, then the series diverges (e.g., $\sum n/(n+1)$ diverges). If

$$\lim_{n\to\infty}a_n=0,$$

then you can't draw any con- The total sum will be equal to clusions (e.g., $\sum 1/n$ diverges | s_n plus a remainer, R_n : but $\sum 1/n^2$ converges).

Integral Test

Suppose that there is a function f(x) such that $f(n) = a_n$ and suppose f(x) satisfies three conditions for some c:

(1) f(x) is positive on $[c, \infty)$.

- (2) f(x) is continuous on $[c, \infty)$.
- 3) f(x) is decreasing on $[N, \infty)$ for some $N \geq c$.

If (1), (2), and (3) are met, and

$$\int_{c}^{\infty} f(x) \ dx$$

converges, then

$$\sum_{n=c}^{\infty} f(n) = \sum_{n=c}^{\infty} a_n$$

converges.

If (1), (2), and (3) are met, and

$$\int_{c}^{\infty} f(x) dx$$

diverges, then

$$\sum_{n=c}^{\infty} f(n) = \sum_{n=c}^{\infty} a_n$$

diverges.

Note: The integral test is often used with c = 1.

Estimating Sums

Suppose the series

$$s = \sum_{n=1}^{\infty} a_n$$

converges, but you don't know its value. You can estimate its value with a partial sum, s_n .

$$s = s_n + R_n.$$

If $a_n = f(n)$ as in the integral test, and (1), (2), and (3)are satisfied, then the remain $der R_n$ is bounded by

$$R_n \le \int_n^\infty f\left(x\right) \, dx$$

I for n > c.

Comparison Test

are positive and all b_n in an where all $b_n > 0$. Example: the other sequence are also positive.

Direct Comparison

• If $0 < a_n \le b_n$ and

$$\sum_{n=1}^{\infty} b_n$$

converges, then

$$\sum_{n=1}^{\infty} a_n$$

converges and $\sum a_n \leq \sum b_n$.

• If $0 < a_n \le b_n$ and

$$\sum_{n=1}^{\infty} a_n$$

diverges, then

$$\sum_{n=1}^{\infty} b_n$$

diverges.

Limit Comparison Test

If $a_n > 0$ and $b_n > 0$, and

$$\lim_{n \to \infty} \frac{a_n}{b_n} = c$$

with $0 < c < \infty$, then $\sum a_n$ and $\sum b_n$ both converge or both diverge. That is, if one converges then so does the other, and if one diverges then so does the other.

Alternating Series

Alternating series look like

$$\sum_{n=1}^{\infty} (-1)^n b_n = -b_1 + b_2 - b_3 + \cdots$$

Suppose all a_n in one sequence $\sum_{n=1}^{\infty} (-1)^{n-1} b_n = b_1 - b_2 + b_3 - \cdots$ alternating harmonic series $\int_{-\infty}^{\infty} (-1)^{n-1} \frac{1}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \cdots$

Alternating Series Test

This series converges if

- $b_{n+1} \leq b_n$ for all n and
- $\bullet \quad \lim_{n \to \infty} b_n = 0.$

Estimation Theorem

 $\sum_{n=0}^{\infty} (-1)^{n-1} b_n, \quad b_n \ge 0,$

converges, and $b_{n+1} \leq b_n$ for all n, you can estimate its value

$$s = \sum_{n=1}^{\infty} (-1)^{n-1} b_n$$

by taking the partial sum

$$s_n = \sum_{i=1}^n (-1)^{i-1} b_i.$$

The error in this estimate is at most the magnitude of the first omitted term, b_{n+1} :

$$|R_n| = |s - s_n| \le b_{n+1}.$$

Note: this also works for alternating series of the form

$$\sum_{n=1}^{\infty} (-1)^n b_n.$$

Absolute Convergence, Root, and Ratio Tests

Absolute Convergence

A series $\sum a_n$ converges absolutely if

$$\sum_{n=1}^{\infty} |a_n|$$

converges. Every absolutely convergent series is convergent. The series converges conditionally if the series $\sum a_n$ converges but

$$\sum_{n=1}^{\infty} |a_n|$$

diverges (e.g., alternating harmonic series).

Ratio Test

• If

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = L < 1$$

then $\sum a_n$ converges verges. Example: $\sum_{n=0}^{\infty} \frac{1}{n!}$ converges (L=0).

• If

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = L > 1$$

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \infty$$

then $\sum a_n$ diverges.

• If

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = L = 1$$

then you can draw no conclusions (e.g., $\sum 1/n$ diverges, $\sum 1/n^2$ converges).

Root Test

• If

$$\lim_{n\to\infty}\sqrt[n]{|a_n|}=L<1$$

then $\sum a_n$ converges absolutely, so the series converges.

 $\lim_{n\to\infty}\sqrt[n]{|a_n|}=L>1$

$$\lim_{n\to\infty}\sqrt[n]{|a_n|}=\infty$$

then $\sum a_n$ diverges.

$$\lim_{n \to \infty} \sqrt[n]{|a_n|} = L = 1$$

then you can draw no conclusions (e.g., $\sum 1/n$ diverges, $\sum 1/n^2$ converges).

Convergence Test Strategies

absolutely, so the series con- $\left| \text{Classify the form of the series.} \right|$ 1. If $a_n \not\to 0$ then $\sum a_n$ diverges.

2. If the series is of the form

$$\sum_{n=1}^{\infty} ar^{n-1} \quad \text{or} \quad \sum_{n=0}^{\infty} ar^n$$

then use the geometric series. 3. If the series is $\sum_{n=0}^{\infty} \frac{1}{n^n}$, then use what you know about p-series.

4. If $a_n = f(n)$ and f(x) is easy to integrate, try integral test.

5. If the series has either form $\sum_{n=0}^{\infty} (-1)^n b_n \text{ or } \sum_{n=0}^{\infty} (-1)^{n-1} b_n$ with $b_n > 0$ and decreasing,

try the alternating series test.

6. If a_n grows like b_n and $\sum b_n$ is known, use limit comparison test (positive terms).

7. If $|a_n| \leq b_n$ and $\sum b_n$ converges, use comparison and absolute convergence.

8. If the series has n! or nth powers, try the ratio or root tests.