Sequences and Series

Quantitative Learning Center at the University of Connecticut

Sequences

A sequence is a list of numbers

$$
\left\{a_{1}, a_{2}, a_{3}, \ldots, a_{n}, \ldots\right\} .
$$

The sequence converges if

$$
\lim _{n \rightarrow \infty} a_{n}
$$

exists. If the limit does not exist, then the sequence diverges.

Series

A series $\sum^{\infty} a_{n}$ is the limit of the partial sum

$$
s_{n}=\sum_{i=1}^{n} a_{i} .
$$

If $\lim _{n \rightarrow \infty} s_{n}=\lim _{n \rightarrow \infty} a_{1}+\cdots+a_{n}$ exists, then the series converges Otherwise the series diverges.

Bookkeeping on indices:

 $\sum_{n=1}^{\infty} a_{n}=\sum_{n=2}^{\infty} a_{n-1}=\sum_{n=0}^{\infty} a_{n+1}$.Write a few terms to see why

Special Cases

Geometric Series
When $|r|<1$,

$$
\sum_{n=0}^{\infty} a r^{n}=\frac{a}{1-r} .
$$

When $|r| \geq 1$, this geometric series diverges.

Telescoping Series
The telescoping sum
$s_{n}=\sum_{i=1}^{n} \frac{1}{i(i+1)}$

$$
\begin{aligned}
= & \sum_{i=1}^{n}\left(\frac{1}{i}-\frac{1}{i+1}\right) \\
= & 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\cdots \\
& +\frac{1}{n-1}-\frac{1}{n}+\frac{1}{n}-\frac{1}{n+1} \\
= & 1-\frac{1}{n+1}
\end{aligned}
$$

| has the limit

$$
\lim _{n \rightarrow \infty} s_{n}=1
$$

p-Series
The p-series

$$
\sum_{n=1}^{\infty} \frac{1}{n^{p}}
$$

- converges if $p>1$ and
- diverges if $p \leq 1$.

This follows from the integral test.

Example: Harmonic Series
The harmonic series

$$
\sum_{n=1}^{\infty} \frac{1}{n}
$$

is a p-series with $p=1$, so it diverges

Test for Divergence
Given a series

$$
\sum_{n=1}^{\infty} a_{n}
$$

$\lim _{n \rightarrow \infty} a_{n} \neq 0$
or doesn't exist, then the series diverges (e.g., $\sum n /(n+1)$ diverges). If
$\lim _{n \rightarrow \infty} a_{n}=0$,
then you can't draw any conclusions (e.g., $\sum_{n=1}^{\infty} 1 / n$ diverges but $\sum_{n=1}^{\infty} 1 / n^{2}$ converges).

Integral Test

Suppose that there is a function $f(x)$ such that $f(n)=a_{n}$ and suppose $f(x)$ satisfies three con ditions for some c :

1) $f(x)$ is positive on $[c, \infty)$. 2) $f(x)$ is continuous on $[c, \infty)$. 3) $f(x)$ is decreasing on $[N, \infty$ for some $N \geq c$
If (1), (2), and (3) are met, and

$$
\int_{c}^{\infty} f(x) d x
$$

converges, then

$$
\sum_{n=c}^{\infty} f(n)=\sum_{n=c}^{\infty} a_{n}
$$

converges.
If (1), (2), and (3) are met, and $\int_{c}^{\infty} f(x) d x$
diverges, then

$$
\sum_{n=c}^{\infty} f(n)=\sum_{n=c}^{\infty} a_{n}
$$

diverges
Note: The integral test is often used with $c=1$.

Estimating Sums

Suppose the series

$$
s=\sum_{n=1}^{\infty} a_{n}
$$

converges, but you don't know its value. You can estimate its value with a partial sum, s_{n} The total sum will be equal to s_{n} plus a remainer, R_{n}

$$
s=s_{n}+R_{n} .
$$

If $a_{n}=f(n)$ as in the integral test, and (1), (2), and (3) are satisfied, then the remainder R_{n} is bounded by

$$
R_{n} \leq \int_{n}^{\infty} f(x) d x
$$

Comparison Test

Suppose all a_{n} in one sequence are positive and all b_{n} in an other sequence are also positive

Direct Comparison

- If $0<a_{n} \leq b_{n}$ and

$$
\sum_{n=1}^{\infty} b_{n}
$$

converges, then

$$
\sum_{n=1}^{\infty} a_{n}
$$

converges and $\sum a_{n} \leq \sum b_{n}$.

- If $0<a_{n} \leq b_{n}$ and

$$
\sum_{n=1}^{\infty} a_{n}
$$

diverges, then

$$
\sum_{n=1}^{\infty} b_{n}
$$

diverges.

Limit Comparison Test

If $a_{n}>0$ and $b_{n}>0$, and

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=c
$$

with $0<c<\infty$, then $\sum_{n=1}^{\infty} a_{n}$
and $\sum_{n=1}^{\infty} b_{n}$ both converge or both diverge. That is, if one converges then so does the other, and if one diverges then so does the other.

Alternating Series

Alternating series look like
$\sum_{n=1}^{\infty}(-1)^{n} b_{n}=-b_{1}+b_{2}-b_{3}+\cdot \cdot$
$\sum_{n=1}^{\text {or }}(-1)^{n-1} b_{n}=b_{1}-b_{2}+b_{3}-\cdots$
where all $b_{n}>0$. Example: the alternating harmonic series $\sum_{n=1}^{\infty}(-1)^{n-1} \frac{1}{n}=1-\frac{1}{2}+\frac{1}{3}-\cdots$

Alternating Series Test

This series converges if

- $b_{n+1} \leq b_{n}$ for all n and
- $\lim _{n \rightarrow \infty} b_{n}=0$

Estimation Theorem

$$
\sum_{n=1}^{\infty}(-1)^{n-1} b_{n}, \quad b_{n} \geq 0
$$

converges, and $b_{n+1} \leq b_{n}$ for all n, you can estimate its value

$$
s=\sum_{n=1}^{\infty}(-1)^{n-1} b_{n}
$$

by taking the partial sum

$$
s_{n}=\sum_{i=1}^{n}(-1)^{i-1} b_{i}
$$

The error in this estimate is at most the magnitude of the first omitted term, b_{n+1} :

$$
\left|R_{n}\right|=\left|s-s_{n}\right| \leq b_{n+1}
$$

Note: this also works for alter nating series of the form

$$
\sum_{n=1}^{\infty}(-1)^{n} b_{n}
$$

Absolute Convergence,

Root, and Ratio Tests

Absolute Convergence

A series $\sum^{\infty} a_{n}$ converges absolutely if ${ }^{n=1}$ $\sum_{n=1}^{\infty}\left|a_{n}\right|$
converges. Every absolutely con \bullet - If vergent series is convergent. The

$$
\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=L>1
$$

or
$\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=\infty$
then $\sum_{n=1}^{\infty} a_{n}$ diverges.
$\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=L=1$
then you can draw no conclusions (e.g., $\Sigma 1 / n$ diverges, $\Sigma 1 / n^{2}$ converges).

Convergence Test
Strategies
Classify the form of the series. 1. If $a_{n} \nrightarrow 0$ then $\sum_{n=1}^{\infty} a_{n}$ diverges 2. If the series is of the form

$$
\sum_{n=1}^{\infty} a r^{n-1} \quad \text { or } \quad \sum_{n=0}^{\infty} a r^{n}
$$

then use the geometric series. 3. If the series is $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$, then use what you know about p-series 4. If $a_{n}=f(n)$ and $f(x)$ is easy to integrate, try integral test. 5. If the series has either form $\sum_{n=1}^{\infty}(-1)^{n} b_{n}$ or $\sum_{n=1}^{\infty}(-1)^{n-1} b_{n}$ with $b_{n}>0$ and decreasing, try the alternating series test. 6. If a_{n} grows like b_{n} and $\sum_{n=1}^{\infty} b_{n}$ is known, use limit comparison test (positive terms).
7. If $\left|a_{n}\right| \leq b_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ converges, use comparison and absolute convergence.
8. If the series has n ! or nth powers, try the ratio or root tests.

