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Sequences

A sequence is a list of numbers

{a1, a2, a3, . . . , an, . . .} .
The sequence converges if

lim
n→∞ an

exists. If the limit does not ex-

ist, then the sequence diverges.

Series

A series
∞∑
n=1

an is the limit of

the partial sums

sn =
n∑
i=1

ai.

If lim
n→∞ sn= lim

n→∞ a1+· · ·+an ex-

ists, then the series converges.

Otherwise the series diverges.

Bookkeeping on indices:
∞∑
n=1

an =
∞∑
n=2

an−1 =
∞∑
n=0

an+1.

Write a few terms to see why.

Special Cases

Geometric Series

When |r| < 1,
∞∑
n=0

arn =
a

1− r
.

When |r| ≥ 1, this geometric

series diverges.

Telescoping Series

The telescoping sum

sn =
n∑
i=1

1

i (i + 1)
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has the limit

lim
n→∞ sn = 1.

p-Series

The p-series
∞∑
n=1

1

np

• converges if p > 1 and

•diverges if p ≤ 1.

This follows from the integral

test.

Example: Harmonic Series

The harmonic series
∞∑
n=1

1

n

is a p-series with p = 1, so it

diverges.

Test for Divergence

Given a series
∞∑
n=1

an,

if

lim
n→∞ an 6= 0

or doesn’t exist, then the series

diverges (e.g.,
∑
n/(n + 1) di-

verges). If

lim
n→∞ an = 0,

then you can’t draw any con-

clusions (e.g.,
∞∑
n=1

1/n diverges

but
∞∑
n=1

1/n2 converges).

Integral Test

Suppose that there is a function

f (x) such that f (n) = an and

suppose f (x) satisfies three con-

ditions for some c:

1)f (x) is positive on [c,∞).

2)f (x) is continuous on [c,∞).

3)f (x) is decreasing on [N,∞)

for some N ≥ c.

If (1), (2), and (3) are met, and∫ ∞
c

f (x) dx

converges, then

∞∑
n=c

f (n) =
∞∑
n=c

an

converges.

If (1), (2), and (3) are met, and∫ ∞
c

f (x) dx

diverges, then

∞∑
n=c

f (n) =
∞∑
n=c

an

diverges.

Note: The integral test is often

used with c = 1.

Estimating Sums

Suppose the series

s =
∞∑
n=1

an

converges, but you don’t know

its value. You can estimate its

value with a partial sum, sn.

The total sum will be equal to

sn plus a remainer, Rn:

s = sn + Rn.

If an = f (n) as in the inte-

gral test, and (1), (2), and (3)

are satisfied, then the remain-

der Rn is bounded by

Rn ≤
∫ ∞
n

f (x) dx

for n > c.

Comparison Test

Suppose all an in one sequence

are positive and all bn in an-

other sequence are also positive.

Direct Comparison

• If 0 < an ≤ bn and
∞∑
n=1

bn

converges, then
∞∑
n=1

an

converges and
∑
an ≤

∑
bn.

• If 0 < an ≤ bn and
∞∑
n=1

an

diverges, then
∞∑
n=1

bn

diverges.

Limit Comparison Test

If an > 0 and bn > 0, and

lim
n→∞

an
bn

= c

with 0 < c < ∞, then
∞∑
n=1

an

and
∞∑
n=1

bn both converge or both

diverge. That is, if one con-

verges then so does the other,

and if one diverges then so does

the other.

Alternating Series

Alternating series look like
∞∑
n=1

(−1)n bn = −b1+b2−b3+· · ·

or
∞∑
n=1

(−1)n−1 bn = b1−b2+b3−· · ·

where all bn > 0. Example: the

alternating harmonic series
∞∑
n=1

(−1)n−1 1

n
= 1−1

2
+

1

3
−· · ·

Alternating Series Test

This series converges if

• bn+1 ≤ bn for all n and

• lim
n→∞ bn = 0.

Estimation Theorem

If
∞∑
n=1

(−1)n−1 bn, bn ≥ 0,

converges, and bn+1 ≤ bn for all

n, you can estimate its value

s =
∞∑
n=1

(−1)n−1 bn

by taking the partial sum

sn =
n∑
i=1

(−1)i−1 bi.

The error in this estimate is at

most the magnitude of the first

omitted term, bn+1:

|Rn| = |s− sn| ≤ bn+1.

Note: this also works for alter-

nating series of the form
∞∑
n=1

(−1)n bn.

Absolute Convergence,

Root, and Ratio Tests

Absolute Convergence

A series
∞∑
n=1

an converges abso-

lutely if
∞∑
n=1

|an|

converges. Every absolutely con-

vergent series is convergent. The

series converges conditionally

if the series
∞∑
n=1

an converges but

∞∑
n=1

|an|

diverges (e.g., alternating har-

monic series).

Ratio Test

• If

lim
n→∞

∣∣∣∣∣an+1

an

∣∣∣∣∣ = L < 1

then
∞∑
n=1

an converges

absolutely, so the series con-

verges. Example:
∞∑
n=0

1

n!
con-

verges (L = 0).

• If

lim
n→∞

∣∣∣∣∣an+1

an

∣∣∣∣∣ = L > 1

or

lim
n→∞

∣∣∣∣∣an+1

an

∣∣∣∣∣ =∞

then
∞∑
n=1

an diverges.

• If

lim
n→∞

∣∣∣∣∣an+1

an

∣∣∣∣∣ = L = 1

then you can draw no con-

clusions (e.g.,
∑

1/n diverges,∑
1/n2 converges).

Root Test

• If

lim
n→∞

n
√
|an| = L < 1

then
∞∑
n=1

an converges

absolutely, so the series con-

verges.

• If

lim
n→∞

n
√
|an| = L > 1

or

lim
n→∞

n
√
|an| =∞

then
∞∑
n=1

an diverges.

• If

lim
n→∞

n
√
|an| = L = 1

then you can draw no con-

clusions (e.g.,
∑

1/n diverges,∑
1/n2 converges).

Convergence Test

Strategies

Classify the form of the series.

1. If an 6→ 0 then
∞∑
n=1

an diverges.

2. If the series is of the form
∞∑
n=1

arn−1 or
∞∑
n=0

arn

then use the geometric series.

3. If the series is
∞∑
n=1

1

np
, then use

what you know about p-series.

4. If an = f (n) and f (x) is easy

to integrate, try integral test.

5. If the series has either form
∞∑
n=1

(−1)n bn or
∞∑
n=1

(−1)n−1 bn

with bn > 0 and decreasing,

try the alternating series test.

6. If an grows like bn and
∞∑
n=1

bn

is known, use limit compari-

son test (positive terms).

7. If |an| ≤ bn and
∞∑
n=1

bn con-

verges, use comparison and ab-

solute convergence.

8. If the series has n! or nth pow-

ers, try the ratio or root tests.


