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and is more susceptible to backward masking by the subse-
quent formant transition. The frequency-following response 
(FFR) was also rate dependent, with response magnitude of 
the higher frequencies ( 1 400 Hz), but not the frequencies 
corresponding to the fundamental frequency, diminishing 
with increasing rate. The selective impact of rate on high-
frequency components of the FFR implicates the involve-
ment of distinct underlying neural mechanisms for high- 
versus low-frequency components of the response. Further-
more, the different rate sensitivities of the speech-evoked 
onset response and subcomponents of the FFR support the 
involvement of different neural streams for these two re-
sponses. Taken together, these differential effects of rate on 
the ABR components likely reflect distinct aspects of audi-
tory function such that varying rate of presentation of com-
plex stimuli may be expected to elicit unique patterns of ab-
normality, depending on the clinical population.  

Copyright © 2010 S. Karger AG, Basel 

 Introduction 

 Hearing depends on accurate neural encoding and 
perception of temporal events in auditory signals. The au-
ditory brainstem reflects temporal events with extraordi-
nary precision such that miniscule timing delays are di-
agnostically significant in the assessment of hearing loss 
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 Abstract 
 Many sounds in the environment, including speech, are tem-
porally dynamic. The auditory brainstem is exquisitely sensi-
tive to temporal features of the incoming acoustic stream, 
and by varying the speed of presentation of these auditory 
signals it is possible to investigate the precision with which 
temporal cues are represented at a subcortical level. There-
fore, to determine the effects of stimulation rate on the au-
ditory brainstem response (ABR), we recorded evoked re-
sponses to both a click and a consonant-vowel speech syl-
lable (/da/) presented at three rates (15.4, 10.9 and 6.9 Hz). 
We hypothesized that stimulus rate affects the onset to 
speech-evoked responses to a greater extent than click-
evoked responses and that subcomponents of the speech- 
ABR are distinctively affected. While the click response was 
invariant with changes in stimulus rate, timing of the onset 
response to /da/ varied systematically, increasing in peak la-
tency as presentation rate increased. Contrasts between the 
click- and speech-evoked onset responses likely reflect 
acoustic differences, where the speech stimulus onset is 
more gradual, has more delineated spectral information, 

 Received: July 29, 2009 
 Accepted after revision: October 12, 2009 
 Published online: March 10, 2010 

Neurotology
Audiology

 Jennifer L. Krizman 
 Northwestern University 
 2240 Campus Drive 
 Evanston, IL 60208-3540 (USA) 
 Tel. +1 847 491 2459, Fax +1 847 491 2523, E-Mail j-krizman   @   northwestern.edu 

 © 2010 S. Karger AG, Basel
 

 Accessible online at:
www.karger.com/aud 

http://dx.doi.org/10.1159%2F000289572


 Speech-ABR Stimulation Rate Audiol Neurotol 2010;15:332–342 233

and neurological function [for review see Hall, 1992; 
Hood, 1998]. The auditory brainstem response (ABR) is a 
far-field recording of stimulus-locked synchronous neu-
ral events. The human ABR to complex sounds reveals 
distinct aspects of auditory processing in expert and clin-
ical populations that may reflect differences in the encod-
ing and processing of temporal cues. By manipulating the 
stimulus presentation rate, the effects of neural fatigue 
and desynchronization become increasingly evident, 
helping to reveal minute differences in how temporal cues 
are processed in various subpopulations. Understanding 
the effects of stimulation rate on the various facets of 
brainstem activity evoked by complex sounds is funda-
mental to our knowledge of hearing and its disorders.

  The Click-ABR 
 The ABR is a far-field recording of stimulus-locked 

synchronous neural events. Acoustic elements that are 
transient, rapid, and spectrally broad (e.g. clicks) elicit a 
characteristic pattern of neural activity. The click-ABR, 
which provides a reliable and noninvasive method for as-
sessing the integrity of peripheral and subcortical audi-
tory structures, is widely used by clinicians when evaluat-
ing hearing and the health of the auditory brainstem and 
periphery [Hall, 2007; Hood, 1998; Sininger, 1993; Starr 
and Don, 1988]. Timing delays on the order of fractions 
of milliseconds are clinically relevant in the diagnoses of 
hearing loss and brainstem pathologies. 

  Over the last 40 years, a vast literature has been 
amassed to describe how the click-evoked response 
changes for patient factors such as age, sex, extent of hear-
ing loss and different stimulus conditions, including in-
tensity and presentation rate. It is generally accepted that 
for rates between 2 and 20 Hz [Fowler and Noffsinger, 
1983; Hall, 2007] and possibly upwards of 30 Hz [Hood, 
1998], the click-ABR is invariant. Rates faster than 30 Hz 
result in latency delays and, in some cases, amplitude re-
ductions [Don et al., 1977], with later response peaks 
more greatly affected by rate than earlier peaks [Hood, 
1998]. Stimulation rate has been used to enhance differ-
ences between normal and pathological auditory func-
tion. For example, patients with multiple sclerosis are ex-
cessively affected by rate [Jacobson et al., 1987] and chil-
dren with specific language impairments demonstrate 
greater increases in peak latency to increasing click rates 
relative to normal-learning children [Basu et al., 2009]. 

  The Frequency-Following Response 
 ABRs are also elicited by continuous or periodic 

sounds, such as sinusoidal tones. Brainstem neurons 

phase lock to the temporal structure of the eliciting sound, 
giving rise to a sustained response known as the frequen-
cy-following response (FFR), which reflects the encoding 
of the periodic (i.e. frequency-specific) information of the 
stimulus  ̂  2 kHz [Hoormann et al., 1992; Moushegian et 
al., 1973]. The transient (e.g. click-ABR) and sustained 
ABRs are assumed to originate from separate neural gen-
erators [for a review, see Chandrasekaran and Kraus, 
2009]. For example, FFR latency and click-ABR latency 
are not correlated [Hoormann et al., 1992] and are dif-
ferentially affected by intensity [Akhoun et al., 2008] as 
well as sex [Hoormann et al., 1992]. 

  The Speech-ABR 
 In addition to representing the transient features of 

speech sounds, the auditory brainstem represents steady-
state and time-varying formant information. By phase-
locking to the fundamental frequency (F 0 ) and formant-
related harmonics of the stimulus, subcortical synchrony 
is observed in response to synthesized and natural En-
glish vowels [Aiken and Picton, 2008; Dajani et al., 2005; 
Krishnan, 2002], consonant-vowel formant transitions 
[Akhoun et al., 2008; Banai et al., 2009; Plyler and Anan-
thanarayan, 2001; Russo et al., 2004], speech syllables 
[Hornickel et al., 2009b], and words [Galbraith et al., 1995, 
1997, 2004]. In fact, ABRs recorded to speech reflect the 
acoustics with such accuracy that when the evoked re-
sponse is played back as an auditory stimulus, it is per-
ceived as intelligible speech [Galbraith et al., 1995]. In ad-
dition to this fidelity, ABRs are also influenced by lifelong 
auditory experience with language [Krishnan and Plack, 
2009; Krishnan et al., 2005; Swaminathan et al., 2008; for 
review see Skoe and Kraus, 2010] and music [Kraus et al., 
2009; Lee et al., 2009; Musacchia et al., 2007; Parbery-
Clark et al., 2009; Strait et al., 2009; Wong et al., 2007; for 
review see Skoe and Kraus, 2010]. For example, the sub-
cortical response is larger in amplitude to forward as com-
pared to backward speech, suggesting that the brainstem 
may respond preferentially to familiar sounds [Galbraith 
et al., 2004]. This experience-dependent plasticity and the 
link between subcortical processes and higher-level (i.e. 
cortical) function likely involve top-down modulation of 
subcortical structures via corticofugal pathways [reviewed 
in Tzounopoulos and Kraus, 2009].

  The evoked brainstem potential in response to a stop 
consonant speech syllable such as /da/ consists of a tran-
sient response similar to the click-ABR [Song et al., 2006], 
reflecting the transient stop burst of the consonant /d/, 
and an FFR to the voiced formant transition from the /d/ 
to the vowel /a/. Stop consonants are especially vulner-
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able to misperception in clinical populations, including 
poor readers [de Gelder and Vroomen, 1998; Tallal, 1980, 
1981], people with hearing loss [Townsend and Schwartz, 
1981; Van Tasell et al., 1982] and people with auditory-
processing disorders [Banai and Kraus, 2008; Bellis, 2002; 
Tobey et al., 1979]. Considerable work has been done to 
investigate how the brainstem responds to the speech syl-
lable /da/ [Banai et al., 2005, 2009; Chandraskeran et al., 
2009b; Cunningham et al., 2001; Dhar et al., 2009; Hor-
nickel et al., 2009b; Johnson et al., 2007, 2008; King et al., 
2002; Kraus and Nicol, 2005; Russo et al., 2004; Song et 
al., 2008; Wible et al., 2004; for review see Skoe and Kraus, 
2010]. This work has led to the development of BioMARK 
(Biological Marker of Auditory Processing, Natus Medi-
cal Inc.). This clinical technology uses a 40-ms speech 
syllable /da/ with a standard presentation rate of 10.9 Hz. 
Like the click-ABR, the speech-ABR to /da/ evokes a char-
acteristic response ( fig. 1 ) which mimics the evoking 
stimulus. 

  Akin to the BioMark /da/, the ABR elicited by the 
speech syllable /da/ used in this study consists of nine 
characteristic peaks ( fig. 1  a). A uditory brainstem encod-
ing of stimulus timing is reflected in the latency of the 
peaks. Peaks I, III, V, and A represent the stimulus onset 
and are analogous to the click-evoked peaks I, III, V and 
V n . Peak C signals the transition from the aperiodic stop 
burst to the periodic (voiced) formant transition, peaks 
D, E and F represent the F 0  of the speech sound and O 
occurs in response to the offset of the stimulus. Neural 
phase locking to the F 0  is measured in the spectral do-
main as the spectral peak occurring around 100 Hz and 
in the time domain by the interpeak intervals (i.e. period) 
of the prominent periodic peaks of the FFR, namely D, E 
and F. Between these larger-amplitude pitch-related 
peaks are smaller-voltage fluctuations which represent 
the higher-frequency information within the phase-lock-
ing capabilities of the brainstem [ ! 2 kHz; Krishnan, 
2007; Liu et al., 2006]. This encoding includes the first 
formant (F 1 ) range (220–720 Hz) of /da/. 

  The aims of this study were to investigate interactions 
between auditory temporal processing and stimulus com-
plexity by examining the effects of stimulus rate on 
speech- and click-evoked ABRs. We hypothesized that 
variation in presentation rate has a greater effect on the 
onset encoding of /da/ relative to the click stimulus due 
to differences in acoustic complexity. Further motivating 
this hypothesis is that speech-evoked responses are 
known to be selectively disrupted in clinical populations 
despite normal click-evoked responses [Banai et al., 2005, 
2009; Chandrasekeran et al., 2009b; Hornickel et al., 

2009b; Song et al., 2006]. We further hypothesized that 
presentation rate selectively affects specific components 
of the speech-ABR. Specifically, we hypothesized that the 
slower components associated with pitch (F 0  and lower 
harmonics) would be rate invariant while faster compo-
nents reflecting harmonics and onset timing would vary 
with stimulus rate. Functional dissociation between these 
slower and faster aspects has been reported in a number 
of studies [Banai et al., 2009; Johnson et al., 2007; Kraus 
and Nicol, 2005; Wible et al., 2004], where the higher har-
monics and onset timing are diminished or delayed in 
children with language impairments despite normal F 0  
encoding. This hypothesis is consistent with Krishnan 
[2002], who found that lower and higher harmonics in the 
FFR were affected differently by presentation rate and 
with Basu et al. [2009], who showed that rate effects were 
not equivalent for all peaks of responses to clicks pre-
sented above 30 Hz in children with specific language 
impairment. To test these hypotheses, ABRs were record-
ed to a click and speech stimulus at three presentation 
rates: 6.9, 10.9 and 15.4 Hz in young adults. 

  Methods 

 Participants 
 Eighteen adults, 9 female, aged 21–33 years (mean = 26, SD = 

3.48) participated in the study. A full audiogram and a click-
evoked ABR at a rate of 31.25 Hz were used to assess normal audi-
tory function at levels peripheral to the brainstem. All individuals 
had normal audiometric thresholds ( ̂  10 dB nHL) from 150 to 
8000 Hz and normal click-ABR peak V latencies (5.69  8 0.18 ms) 
presented at 45 dB nHL. The click stimulus was also presented 
across the three presentation rates at this intensity level. Calibra-
tion using a sound level meter ensured consistency across stimu-
lus presentation rates throughout the recording session. All pro-
cedures were approved by the Institutional Review Board of 
Northwestern University. 

  Stimuli and Recording Parameters 
 Brainstem potentials were elicited by a click stimulus, a 100- ! s 

square wave with broad spectral content, and the syllable /da/, a 
40-ms, five-formant synthesized speech sound [Klatt, 1980] 
which comprises an initial noise burst and formant transition be-
tween the consonant and the vowel. The F 0  and first three for-
mants (F 1 , F 2 , F 3 ) change linearly over the duration of the stimu-
lus: F 0  from 103 to 125, F 1  from 220 to 720, F 2  from 1700 to 1240 
and F 3  from 2580 to 2500 Hz. F 4  and F 5  are constant at 3600 and 
4500 Hz, respectively.

  Both speech and nonspeech conditions were collected in the 
same manner within the same recording session using the Bio-
logic Navigator Pro System (Natus Medical Inc., Mundelein, Ill., 
USA). Responses were differentially recorded from Ag-AgCl elec-
trodes with electrode impedance  ! 5 k " , with electrodes placed 
at Cz (active), the right ear lobe (reference) and forehead (ground). 
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Speech stimuli were presented monaurally to the right ear at 80.3 
dB SPL through electromagnetically-shielded insert earphones 
(ER-3A, Natus Medical Inc.). During testing, each participant 
watched a DVD of his or her choice with the sound level set to  ! 40 
dB SPL, so it could be heard with the unoccluded ear at a level that 
would not mask the stimulus-evoked response. 

  For the speech condition, stimuli were presented in alternat-
ing polarity and both the click and /da/ were presented at three 
presentation rates: 15.4 Hz (fast), 10.9 Hz (standard), and 6.9 Hz 
(slow). Artifact-free ( 8 23.8  ! V) speech-evoked responses were 
averaged over a 64-ms time window that included an 11-ms pre-
stimulus period to create two subaverages of 3000 sweeps. The 
click stimulus was presented in a single polarity (i.e. rarefaction) 
in two 2000-sweep blocks averaged over a 10.66-ms window. The 
presentation order for the click and speech stimuli always pro-
ceeded from fast to slow so as to present the most taxing stimulus 
condition first. The speech-ABRs were online bandpass filtered 
from 100 to 2000 Hz (12 dB/octave) and digitally sampled at 16 

kHz. The click-ABRs were online bandpass filtered from 100 to 
1500 Hz and digitally sampled at 24 kHz. Subaverages were aver-
aged together at the end of the recording session.

  Data Analysis 
 For the click-ABR, peak latency (the time interval between 

stimulus onset and the peak of the response) and peak amplitude 
for waves III, V and V n  (the negative trough following V) were 
visually identified for each subject at each rate. Wave III was iden-
tified as the positive peak occurring at approximately 3.8 ms after 
stimulus onset, wave V was identified as the peak near 5.5 ms im-
mediately before the negative slope, and V n  was selected as the 
bottom of the downward slope following wave V [Hall, 1992]. 

  The ABR to /da/ has been described in detail and is reliable 
both within and across subjects [Banai et al., 2005, 2009; Cun-
ningham et al., 2001; Hornickel et al., 2009a; Johnson et al., 2007; 
King et al., 2002; Russo et al., 2004, 2005; Wible et al., 2004]. For 
each subject, peak latencies were visually identified and ampli-
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  Fig. 1.  Comparison of grand average responses and mean peak 
latencies to /da/ at three stimulation rates. In the onset response 
to the /da/ stimulus, the peak latencies systematically increased
in response to increasing stimulus presentation rates while the 
subsequent peaks were stable across the three presentation rates. 
 *  = Significant results.  a  The grand average responses (n = 18) to 
each rate are plotted with the stimulus plotted in gray above these 
waveforms. To account for the time associated with neural trans-
mission, the stimulus waveform has been shifted in time to align 
its onset with the onset of the response for the standard rate. The 

peaks D, E, and F, corresponding to the F 0  of the stimulus, are la-
beled in gray and those corresponding to the timing landmarks 
are in black (III, V, A, C, and O).  b  Bar graphs showing significant 
rate effects for all three onset peaks (III, V, and A). In contrast, the 
peaks of the FFR (D, E, and F) did not shift with rate, with one 
exception (see text). Additionally, the increased fidelity of higher-
frequency aspects of the stimulus at the slower presentation rate 
is evident in the fine structure of the responses (i.e. better defini-
tion of the smaller peaks between D, E and F). 
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tudes were determined for nine peaks in the ABR, including the 
onset (I, III, V and A), transition (C), offset (O) and frequency-fol-
lowing (D, E and F) peaks. Peaks I, III, V, and A of the speech-
evoked response were picked using similar criteria as for peaks I, 
III, V, and V n  of the click-evoked response. Peaks C, D, E, F, and 
O were identified as the deepest troughs within the expected la-
tency range for each peak, consistent with previous reports in 
young adults [Dhar et al., 2009; Hornickel et al., 2009a]. Average 
latencies were: C ~18.5 ms, D ~22 ms, E ~31 ms, peak F ~39.7 ms, 
and the offset peak, O, was centered around 48 ms. Any peak 
smaller than the amplitude of the prestimulus baseline activity 
was deemed ‘not reliable’ and excluded from analyses ( table 1 ). 
Two peaks, I and C, were not analyzed due to their high variabil-
ity and the difficulty in identifying these peaks in individual sub-
jects. The VA complex was further analyzed by computing the 
slope, a measure of neural synchrony to the onset of the stimulus. 
Within the FFR, occurring between 21 and 42 ms (including 
peaks D, E and F), the average spectral amplitudes of four fre-
quency ranges were analyzed using fast Fourier analysis: F 0,  103–
125 Hz, the F 1  frequency range broken into a low and high range, 
180–410 and 411–755 Hz, and higher frequencies above the F 1 , 
756–1130 Hz that are still within the phase-locking capabilities of 
the brainstem. The F 1  was broken into these two ranges to sepa-
rate the more prominent frequency peaks in the F 1  response (180–
410 Hz) from the less prominent frequencies (411–755 Hz), which 
pattern with auditory-based learning disabilities [Banai et al., 
2009; Johnson et al., 2007]. 

  Repeated-measures analysis of variance (ANOVA) was used to 
compare the responses to the different presentation rates of the 
click and speech stimuli. Significance was determined using the 
Greenhouse-Geisser correction, which determines statistical sig-
nificance using stricter degrees of freedom. These p values as well 
as  #  2 , a measure of effect size, are reported. For significant F val-
ues, Bonferroni post-hoc tests were performed. Data processing 
were performed using routines coded in MATLAB 2006b (The 
MathWorks, Inc., Natick, Mass., USA) and statistical analyses 
were performed in SPSS (SPSS Inc., Chicago, Ill., USA).

  Results 

 Onset Measures 
 Speech-ABR 
 The onset of the ABR to /da/ was affected by presenta-

tion rate. As can be seen in the grand average waveforms 
in  figure 1 , the onset response peaks III, V, and A differed 
significantly in latency such that the faster the presenta-
tion rate the later the response. This shift in latency for 
the onset peaks, evident in the grand average waveforms, 
is not simply inherited by subsequent peaks. That is, 
peaks D, E, F and O varied relatively less than the preced-
ing peaks with changing rate. The mean latencies of peaks 
III, V and A are plotted in  figure 1 b and the bar graphs 
illustrate the latency shifts with changes in rate. The pat-
tern of increased latency with increased rate was consis-
tent across subjects, evident in 94.4% of subjects for peaks 
III and A, and in 100% of the subjects for peak V ( table 1 ). 
The subject who did not display the pattern at peak III 
was not the same subject who did not display the pattern 
at peak A. Peak III latency became systematically later 
with increasing stimulus rate [F(1.5, 26.1) = 50.381, p  !  
0.0005,  #  2  =   0.748]. Peak V demonstrated the same pat-
tern [F(1.96, 33.33) = 286.802, p  !  0.0005,  #  2  =   0.944], as 
did peak A [F(1.92, 32.57) = 213.724, p  !  0.0005,  #  2  =  
 0.926]. The amplitude of all onset peaks did not differ 
across the three rates.

  Click-ABR 
 In line with previous findings, the timing of the click 

response did not vary across the three rates ( fig. 2 a). The 

Table 1. Percent detection, mean latency, standard deviation and percent of subjects showing the rate effect (i.e. the fast rate is later 
than the standard rate which is later than the slow rate) at the individual peaks

Speech

Peak: III V A C D E

Rate, Hz 15.4 10.9 6.9 15.4 10.9 6.9 15.4 10.9 6.9 15.4 10.9 6.9 15.4 10.9 6.9 15.4 10.9 6.9

% Detection 100 100 100 100 100 100 100 100 100 67 67 61 89 94 89 100 100 100

Mean latency, ms 5.16 4.78 4.56 7.02 6.70 6.26 8.04 7.56 7.20 18.64 18.65 18.54 22.73 22.56 22.37 31.29 31.24 31.20

SD, ms 0.37 0.30 0.36 0.31 0.27 0.33 0.42 0.43 0.40 0.72 0.46 0.49 0.73 0.78 0.59 0.55 0.50 0.57

% Showing
rate effect 94.40 100 94.40 n/a 27.80 0

None of the peaks after of the onset response to the speech syllable /da/ had more than 30% of the subjects showing a rate-dependent effect. This pattern 
was seen in even fewer subjects in the click-evoked response. A possible explanation for the higher number of subjects displaying the pattern in the FFR peaks 
to /da/ than to the onset peaks to the click is that the strength of the rate dependence on the latency of the /da/ onset peaks affected these later peaks. For ex-
ample, peak F was the only FFR peak that had a significant effect of rate but was no longer significant when peak A was controlled for in the analyses.
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grand average click-evoked responses to the three rates 
were nearly identical in peak latencies and amplitudes. 
There was no significant difference in latency at peak III 
[F(1.5, 26.3)  !  1, n.s.], peak V [F(1.8, 30.2)  !  1, n.s.) or 
peak V n  [F(1.9, 32.8)  !  1, n.s.] in response to the three 
presentation rates ( fig. 2 b). There was, however, a sig-
nificant difference in the amplitude of peak III [F(1.8, 
30.6) = 6.140, p = 0.007,  #  2  =   0.265]; post-hoc analyses 
revealed differences between the fast and slow condi-
tions (p = 0.002) but not between the fast and standard 
conditions (p = 0.210) or the standard and slow condi-
tions (p = 0.618). No effect of rate was seen for the am-
plitudes of wave V [F(1.9, 31.8) = 1.902, p = 0.168] or V n  
[F(1.8, 29.9)  !  1, n.s.].

  Click- versus Speech-ABR 
  Figure 2  compares the latency-dependent onset re-

sponse to /da/ and the rate-invariant click response (peaks 
III, V and V n ). A 3 (rate)  !  2 (stimuli) repeated measures 
ANOVA was performed to evaluate rate-dependent ef-
fects at these three peaks across the two stimuli.  Fig-
ure 2 b shows the latency shifts of the click-evoked and 
speech-evoked peaks at the fast, standard and slow rate. 
The interaction between the three rates and two stimuli 
was significant across all peaks: III [F(1.6, 27.7) = 48.811, 
p  !  0.0005,  #  2  =   0.742), V (F(1.92, 32.7) = 251.536, p  !  
0.0005,  #  2  =   0.937], and A/V n  [F(1.8, 30.8) = 206.321, p  !  
0.0005,  #  2  =   0.924]. The rate-latency plots in figure 2b 
demonstrate the different effects of presentation rate for 
the speech and nonspeech conditions on the onset laten-
cies.

Table 1 (continued)

Speech Click

Peak: F O III V Vn

Rate, Hz 15.4 10.9 6.9 15.4 10.9 6.9 15.4 10.9 6.9 15.4 10.9 6.9 15.4 10.9 6.9

 % Detection 100 100 100 100 89 94 100 100 100 100 100 100 100 100 100

Mean latency, ms 39.68 39.64 39.41 48.25 48.33 48.24 3.82 3.81 3.81 5.58 5.57 5.57 6.25 6.23 6.23

SD, ms 0.61 0.58 0.44 0.42 0.44 0.45 0.13 0.13 0.14 0.19 0.19 0.19 0.21 0.23 0.24

Showing
% rate effect 27.80 16.70 11.10 5.56 17

Table 2. Repeated-measures ANOVA F values for each measure

Measure F p value
fast vs.
standard

standard
vs. slow

fast vs. 
slow

 Speech 
Latency

III 50.381 <0.0005 0.024 <0.0005
V 286.802 <0.0005 <0.0005 <0.0005
A 213.724 <0.0005 <0.0005 <0.0005
D <1 n.s. n.s. n.s.
E <1 n.s. n.s. n.s.
F 13.843 0.005 n.s. 0.002
O <1 n.s. n.s. n.s.

IPL
D to E <1 n.s. n.s. n.s.
E to F 5.879 n.s. 0.031 n.s.

FFT
F0 <1 n.s. n.s. n.s.
Low F1 1.234 n.s. n.s. n.s.
High F1 10.966 n.s. 0.003 0.009
HF 46.122 0.004 <0.0005 <0.0005

 Click 
Latency

III <1 n.s. n.s. n.s.
V <1 n.s. n.s. n.s.
Vn <1 n.s. n.s. n.s.

Where the repeated measures ANOVA is significant (see text), 
the Bonferroni-corrected post-hoc p values are given for group 
comparisons. The greatest difference between conditions was 
seen in the speech onset peaks and high harmonics of the FFR 
response. HF = High frequency.
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  FFR of the Speech-ABR 
 Fundamental Frequency 
 As hypothesized, rate affected the timing of the onset 

of the speech-ABR but had little effect on the timing of 
the FFR peaks D, E and F, which reflect the subcortical 
encoding of the F 0  ( fig. 1 ). Although there was an effect 
of rate at peak F [F(1.4, 24.4) = 13.843, p  !  0.0005,  #  2  =  
 0.449], the effect was not present for all pairwise com-
parisons ( table 2 ). When the latencies at peak F were co-
varied with the latencies at peak A, the rate effect disap-
peared [F(1.4, 19.8)  !  1, n.s.], suggesting that the shift seen 
at peak F is a carryover of the large effect of rate on the 
onset response.

  To further examine the subcortical encoding of the F 0 , 
the spectra of the responses from 21 to 42 ms across the 
three presentation rates were analyzed ( fig. 3 ). As in the 
temporal domain, mean spectral amplitude of the F 0  
range (103–125 Hz) was invariant across the three rates 
[F(1.9, 32.3)  !  1, n.s.]. Consistent with these findings, the 
difference in interpeak latency, of D to E, reflecting the 
period of the F 0 , did not differ with rate [F(1.4, 23.9)  !  1, 
n.s.]. Peak E to peak F interpeak latency did show a sig-
nificant effect of rate [F(1.8, 30.1) = 5.879, p = 0.006,  #  2  =  
 0.257], although this was only significant between the
responses to the standard and slow presentation rates. 
Lastly, the offset peak, O, showed no effect of rate
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[F(1.42, 24.1)  !  1, n.s.]. Therefore, the findings in the 
spectral domain complement the findings in the tempo-
ral domain, confirming that F 0  encoding is stable with 
rate. 

  Harmonics 
 Similar to the F 0 , the spectral amplitude of the lower 

region of F 1 , from 180 Hz to 410 Hz, did not vary with 
the presentation rate [F(1.5, 25.9) = 1.234, p = 0.298, n.s.]. 
The encoding of the high range of F 1  from 411 to 755 Hz, 
however, was rate dependent [F(1.6, 26.7) = 10.966, p = 
0.001,  #  2  =   0.392]. In this range, the difference was sig-
nificant between the responses to the fast and slow stim-
ulus presentations ( table 2 ) as well as between the stan-
dard and slow responses but not between the fast to stan-
dard stimulus presentation rates. Additionally, the 

average spectral amplitude of the higher harmonics from 
756 to 1130 Hz increased as the presentation rate slowed 
[F(1.6, 26.5) = 46.122, p  !  0.0005,  #  2  =   0.731] ( fig. 3 ). This 
monotonic increase was significant across all stimulus 
presentation rates.

  Discussion 

 The effects of stimulus timing on the human ABR de-
pend on the acoustics of the evoking stimulus and the 
aspect of brainstem activity considered. Rate had a dra-
matic affect on the timing of the onset portion of the 
speech-evoked response while corresponding click-
evoked peaks were invariant. Rate affected the FFR in a 
systematic manner, with higher frequencies becoming 
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increasingly rate sensitive while lower frequencies (nota-
bly the F 0 ) remained rate resistant.

  Onset response differences between speech and click 
stimuli can be attributed to stimulus differences. Where-
as clicks contain a broad range of frequencies, speech is 
more spectrally shaped. In addition, the onset of the /da/ 
stimulus occurs more gradually relative to the instanta-
neous rise time of the click. The onset of the /da/ syllable 
may also be more susceptible to the effects of backward 
masking by the larger-amplitude formant transition 
[Johnson et al., 2007]. Finally, brainstem activity can be 
experience dependent [Tzounopoulos and Kraus, 2009], 
i.e. the differing rate effects of the two stimuli may be due 
to the greater exposure to and use of speech sounds.

  Another consideration when interpreting the rate ef-
fects for the speech versus click stimuli is that although 
the presentation rates were identical, the click is shorter 
in duration resulting in a longer interstimulus interval 
(ISI) relative to the speech stimulus. For the presentation 
rates used here, the ISIs were 145 versus 105 ms (slow), 92 
versus 52 ms (standard), and 65 versus 25 ms (fast) for the 
click versus speech stimuli, respectively. In order for the 
/da/ and click stimuli to occur at equivalent ISIs, the rates 
for the click stimulus would need to be 40, 19.2 and 9.5 
Hz to obtain ISIs equivalent to the /da/ at the fast, stan-
dard and slow rates, respectively. For two of these pre-
sentation rates, 9.5 and 19.2 Hz, click-evoked response 
latencies are known to be rate invariant [Fowler and 
Noffsinger, 1983; Hall, 1992; Hood, 1998]. Thus, the dif-
ferences observed between the onset response of the 
speech and click-ABRs cannot be accounted for by differ-
ences in ISI. These results suggest that the encoding of 
certain sounds is more resistant to the stress of increased 
stimulation rate than other sounds. 

  The effect of stimulus presentation rate is likely bound-
ed by a maximum and minimum rate, where rates outside 
either extreme would no longer affect the response, and 
rates near the extremes would show nonlinear outcomes. 
These boundaries likely reflect an interaction of neural 
adaptation, neural fatigue, and refractory properties of in-
dividual nerve fibers resulting in a desynchronization of 
the response that most affects the encoding of the faster 
elements of the stimulus [Hall, 1992; Jacobson et al., 1987]. 
Varying the presentation rate, then, manipulates the neu-
rophysiological mechanisms underlying the subcortical 
encoding of timing, thereby elucidating what happens to 
the population-wide neural response when the stimulus is 
manipulated along this temporal dimension. 

  For the speech stimulus, the onset response and the 
lower frequency components of the FFR were affected 

differently by stimulation rate, suggesting that these re-
sponse components enlist distinct neural populations in 
the auditory pathway. Considerable data support the ex-
istence of separate neural mechanisms for the onset re-
sponse and FFR [Akhoun et al., 2008; Chandrasekaran 
and Kraus, 2009a; Hoormann et al., 1992; Hornickel et 
al., 2009b]. Using a longer speech syllable (a 60-ms /ba/), 
Akhoun et al. [2008] found that as stimulus intensity de-
creased, the onset response and FFR both increased in 
latency. However, the FFR increased at a greater rate than 
the onset response. Background noise is also known to 
diminish the onset response while the FFR continues to 
be robust [Russo et al., 2004]. Thus, stimulus manipula-
tions have different impacts on the onset resoponse and 
FFR. Moreover, compared to the FFR, the transient onset 
is less susceptible to changes associated with short-term 
auditory training [Russo et al., 2005].

  Stressing the system degrades ABRs even in the normal 
auditory system [Galbraith et al., 2004, 1995; Russo et al., 
2004; Song et al., 2006]. This degradation is inordinately 
exacerbated in clinical populations when the stimulus is 
more ecologically valid [Banai et al., 2009; Chandraseke-
ran et al., 2009b; Hor nickel et al., 2009a; Wible et al., 2004], 
presented in background noise [Russo et al., 2004] or at a 
faster rate [Basu et al., 2009]. Thus, impairments are fea-
ture-specific and not generalized or pan-response phe-
nomena. Children with reading impairments, for exam-
ple, have normal click-ABRs and normal F 0  encoding, yet 
abnormal responses to the faster elements of speech (i.e. 
harmonics and timing) [Banai et al., 2009; Cunningham 
et al., 2001]. Furthermore, long-term music and language 
experience selectively enhance specific stimulus features 
of brainstem activity [Krishnan et al., 2005, 2009; Lee et 
al., 2009; Musacchia et al., 2007; Strait et al., 2009; Swam-
inathan et al., 2008; Wong et al., 2007]. Consistent with 
this previous work, rate effects do not generalize to the 
entire response but are specific to the onset and higher-
frequency subcomponents of brainstem activity, primar-
ily in response to the faster elements of speech.

  Stimulus rate disproportionately affects subcompo-
nents of human brainstem activity, specifically the faster 
elements of speech, and thereby provides an index for ex-
amining the role of subcortical timing and its relation-
ship to normal, impaired and expert auditory perception. 
The rate effects demonstrated here in normal-hearing 
young adults are likely to be more pronounced in popula-
tions where auditory processing is compromised, such as 
older adults or reading-impaired children, who have de-
creased neural synchrony and impaired perception of 
rapid speech elements [Caspary et al., 1995; Gordon-
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Salant et al., 2007; Merzenich et al., 1996; Tallal et al., 
1985]. Varying stimulus presentation rate, then, is ex-
pected to have different neural consequences in expert, 
normal and impaired populations. Further investigation 
into the effects of stimulus rate will continue to reveal the 
interplay between stimulus timing and temporal pro-
cessing, its role in perception, and the underlying mecha-
nisms that are selectively enhanced or diminished in ex-
pert and clinical populations.
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