

# Algal Response to Removal of the Invasive Cordgrass *Spartina densiflora* in a Salt Marsh at Humboldt Bay, California, USA

Author(s): Simona Augyte and Andrea Pickart Source: Natural Areas Journal, 34(3):325-331. 2014. Published By: Natural Areas Association DOI: <u>http://dx.doi.org/10.3375/043.034.0307</u> URL: <u>http://www.bioone.org/doi/full/10.3375/043.034.0307</u>

BioOne (<u>www.bioone.org</u>) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses.

Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne's Terms of Use, available at <a href="https://www.bioone.org/page/terms\_of\_use">www.bioone.org/page/terms\_of\_use</a>.

Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder.

BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research.

### RESEARCH NOTE

Algal Response to Removal of the Invasive Cordgrass Spartina densiflora in a Salt Marsh at Humboldt Bay, California, USA

### Simona Augyte<sup>1,3</sup>

<sup>1</sup>Department of Ecology and Evolutionary Biology University of Connecticut 75 N. Eagleville Rd. Storrs, CT 06269

## Andrea Pickart<sup>2</sup>

<sup>2</sup>U.S. Fish and Wildlife Service 6800 Lanphere Rd. Arcata, CA 95521

<sup>3</sup> Corresponding author: simona.augyte@uconn.edu: 707-832-7007

Natural Areas Journal 34:325-331

**ABSTRACT**: There are few published studies examining the effects of invasive vascular plants on cooccurring nonvascular species, despite the fact that photoautotrophic algae and cyanobacteria exist at the base of the marine food web. This study tested whether the removal of the invasive dense-flowered cordgrass (*Spartina densiflora* Brogn.) resulted in an increase in biomass of micro- and macroalgae in a salt marsh located in northern California. The site was sampled over a two-year time period, and percent cover of benthic algae was measured using a point-intercept technique in treated and control areas. Treatment consisted of selective mechanical removal of *S. densiflora*. The functional groups green filamentous and green sheet algae as well as diatoms and cyanobacteria were found. Growth peaks in algal biomass were significantly lower in the control compared to the treated areas. In addition, successional trends were observed in treated plots; green filamentous algae and diatoms were first to colonize, followed by cyanobacteria during the second year's growth. Our results suggest that the presence of *S. densiflora* lowers both algal biomass and functional group diversity in an invaded salt marsh, with implications for resulting trophic cascades.

Index terms: algae, functional groups, invasive species, salt marsh, Spartina densiflora, succession

### INTRODUCTION

Dense-flowered cordgrass (Spartina densiflora Brogn.) was first introduced into Humboldt Bay in the mid-1800s and has spread and invaded over 90% of the Bay's salt marsh habitat (A. Pickart, unpubl. data). It displaces native vascular plant species through competition (Kittelson and Boyd 1997). Recent work in Humboldt Bay salt marshes showed that S. densiflora-invaded sites had lower diversity and abundance of terrestrial invertebrates compared to restored sites (Mitchell 2012). A Spartina canopy can shade out ephemeral algal species (Van Raalt et al. 1976), thereby favoring grazers that feed on cordgrass detritus instead of algal biomass. Lagarde (2012) showed that native salt marsh had greater net ecosystem productivity despite its lower above-ground biomass, compared to S. densiflora-dominated marsh at a site in Humboldt Bay. Since 2004, restoration efforts have been carried out at Humboldt Bay National Wildlife Refuge (HBNWR) to remove S. densiflora using mechanical methods (A. Pickart, unpubl. data).

Plants are essential components in coastal wetlands as they regulate important processes such as nutrient cycling, sedimentation rates, and hydrology (Bertness 1988; Leonard and Luther 1995). Nonvascular plants (micro- and microalgae) and cyanobacteria are important primary producers, and provide food sources for invertebrates and fish, and in turn are largely controlled by these grazers and their predators in complex trophic cascades (Sullivan and Moncreiff 1990; Silliman and Bertness 2002). Other studies conducted in Pacific Coast estuaries show considerable changes in plant species composition and broader-scale alterations of salt marsh ecosystem processes after the invasion of *Spartina alterniflora* Loisel. (Grosholz et al. 2009). For example, in San Francisco Bay, the invasive *Spartina* hybrid has shifted the wetland food-web from algal-based to detritus-based, thereby altering the amount of biomass as well as the types of invertebrates present in the Bay (Levin et al. 2006).

In addition to providing primary productivity, cyanobacteria may be early colonizers of bare mud in salt marshes and important contributors of nitrogen to salt marshes (Carpenter et al. 1978), thereby contributing to colonization by successive higher plants (Jones 1974). Other salt-tolerant marine algae provide 'habitat-amelioration' in physically and biologically stressed environments where they have been shown to facilitate colonization of vascular plants and seagrasses in sandy habitats with low substrate nutrients and high light levels (Bertness and Callaway 1994). Reports of algae in East Coast salt marshes have documented both cyanobacteria and green filamentous algae (e.g., Rhizoclonium Kützing) as early successional spring species (Blum 1968).

Light intensity is one of the main factors that governs the composition of micro- and macroalgae in salt marsh communities (Sullivan and Daiber 1976). However, an excess amount of light from the removal of canopy cover in a California salt marsh produced marsh soils with harsher physical properties and shifted the micro-algal community to become diatom-dominant from a cyanobacteria-dominated one (Whitcraft and Levin 2007). Furthermore, vascular plants can affect the quality and quantity of light that reaches the soil surface, thus controlling the amount of biomass and the timing of edaphic algal growth (Seliskar et al. 2002). A study in a salt marsh in Massachusetts showed that increases in light penetration with the removal of Spartina were directly correlated to an immediate increase in the growth of benthic algae on the marsh surface, followed by its consumption by marsh animals (Buchsbaum et al. 2009).

The main objective of this study was to test whether the removal of the invasive dense-flowering cordgrass would lead to an increase in diversity and biomass of micro- and macroalgae in the Humboldt Bay salt marsh. In addition, we wanted to assess changes in functional group dominance over time in treated compared with control areas. Results could help elucidate the impacts of *S. densiflora* removal on the base of the food web, with implications for higher trophic levels – specifically fish, birds, and small mammals.

### **METHODS**

Sampling was conducted in four permanent experimental treatment areas (15 m × 15 m) at Humboldt Bay National Wildlife Refuge, CA (Figure 1) from September 2008 through August 2010. The treatment areas were part of a larger study that assessed the effectiveness of mechanical removal treatments on S. densiflora eradication (A. Pickart, unpubl. data). Treatment areas were similar in their topography, tidal elevation, and soil type, and were located so that replicated treatment areas were stratified into moderate (<60%) and high (>60%)Spartina cover. Treatment consisted of the use of a hand-held metal-bladed brushcutter to selectively mow all S. densiflora, followed by shallow subsurface "grinding" of rhizomes. Mowed S. densiflora was subsequently raked and removed. This resulted in the removal of all S. densiflora canopy, as well as the exposure of bare muddy substrate in those areas where S. densiflora had been present. Brushcutting



Figure 1. Study site location, Humboldt Bay National Wildlife Refuge in Humboldt County, CA, USA.

was performed in August 2008.

In each  $15\text{-m} \times 15\text{-m}$  treatment area, a total of five transects were placed using systematic spacing with a random start. A 30-cm  $\times$  30-cm quadrat was placed at six randomly selected, permanent sample points along each 15-m transect. Using a gridded quadrat, 30 randomly selected points were used to measure percent cover based on point intercepts of each algal functional group in the quadrat. Sampling was conducted during the low tide at 14 time intervals over two years.

Algae were placed into one of four functional groups based on morphology: green filamentous, green sheet, diatoms, and cyanobacteria. Any unknown algae were identified at the Humboldt State University Cryptogamic Herbarium laboratory using microscopy and dichotomous keys (Gabrielson et al. 2004; Gabrielson et al. 2006). Data analysis was done with R statistical software.

### RESULTS

# Change in Algal Abundance over Time

The total algal cover in the salt marsh displayed seasonal peaks around April and May for both years in both the control and treatment areas (Figure 2). A two-way



Figure 2. Mean percent total algal cover for the control and treated (*Spartina densiflora* selectively mowed) areas over a two year time period (2008–2010) at the Humboldt Bay National Wildlife Refuge. Standard error bars are included.

general linear model revealed a significant difference in the mean algal cover in the treated vs. control areas over time (P < 0.001). In the spring of 2009, mean total algal cover peaked at 9% in control and 17% in treated areas (Figure 3). By summer, total cover declined to 7% for the control and 5% for the treated areas. The following spring of 2010, total algal cover peaked at 18% in control and 32% in treated areas, declining to 4% in control and 16% in treated areas by summer. A strong correlation was found between the individual time steps and total algal cover for the mechanical treatment ( $r^2 = 0.338$ , P = 0.0172) compared with the control ( $r^2$ = 0.049, P = 0.545).

### **Successional Trends**

In the control areas, most of the algal cover was formed by the green filamentous group in both years. The seasonal peaks were in April for the first year and June for the second year, of 10% and 11% cover, respectively (Figure 4a). The rest of the year, algal cover ranged from 2–4% cover.

In the treated areas, green filamentous algae and diatoms reached their first seasonal peak in April at 10% and 8% cover, respectively, after which they rapidly decreased in abundance to less than 1% (Figure 4b). During the first winter, diatoms increased to 2%, but over the next year decreased



Figure 3. Changes in mean total algal cover over two years (2008–2010) in control and treated (*Spartina densiflora* selectively mowed) areas at the Humboldt Bay National Wildlife Refuge. Standard error bars are included.

to less than 1%. The second year peak for the filamentous algae was in March at 32% cover. Cyanobacteria were not present until November of the second year at 1% cover, followed by a gradual increase to 13% in August.

### **Algal Species Composition**

All the microalgae found were in the phylum Chlorophyta. The green filamentous group consisted of four algal species: *Cladophora columbiana* F.S. Collins, *Rhizoclonium riparium* (Roth) Harvey, *Chaetomorpha linum* (*O.F.* Müller) Kützing, *Vaucheria longicaulis* Hoppaugh (Figures 5 – 7). Only one taxon (*Ulva* sp. Linnaeus) was present in the green sheet group. Cyanobacteria, phylum Cyanobacteria (Figure 8) and diatoms, phylum Heterokontophyta (Figure 9) were not identified to the species level.

### DISCUSSION

This results of this study suggest that the invasive S. densiflora lowered the abundance and diversity of algae and suppressed cyanobacterial growth at a northern California salt marsh. Removal of S. densiflora using mechanical methods resulted in an increase in total algal abundance and functional group diversity by the end of the second sampling year. This suggests that canopy removal of the invasive Spartina prevents shading and likely has a positive effect on salt marsh algal diversity and growth. A study in a southern California wetland found that the net primary productivity of both macro- and micro-algae was limited by low light and desiccation stress (Zedler 1980). The green filamentous algae, diatoms, and cyanobacterial functional groups were more abundant in the treated than in the control area - species heavily dependent on light for establishment and growth. Similarly, Lagarde's (2012) study in a nearby salt marsh found that in areas lacking S. densiflora invasion, more light tends to reach the sediment surface, allowing benthic algae to colonize the native plots. Furthermore, he found that S. densiflora colonization lowered the net primary productivity of invaded plots.

Our experiment suggests successional trends of algal functional groups following *S. densiflora* removal, indicated by shifts in dominance over time. Early successional algae are fast to accumulate during the first stages of community development

and tend to have high immigration abilities compared to late successional species that have high reproductive rates and are fast to accumulate when population densities are large (McCormick and Stevenson 1991). Both filamentous green algae and diatoms



Figure 4. Total percent cover of algae based on three functional groups; diatoms, green filamentous, and cyanobacteria over time for the (a) control and (b) treated (*Spartina densiflora* selectively mowed) areas at the Humboldt Bay National Wildlife Refuge. Standard error bars are included.

appear to be early successional species, decreasing in abundance after their first spring peak, possibly due to grazing pressures. Diatoms remained low in abundance the second year and disappeared by the end of the second year. Cyanobacteria appear to be later successional, colonizing in large densities only late in the summer of the second year.

Coastal wetlands provide important habitat for fishes, shellfish and shorebirds and are particularly sensitive to introductions of nonnative vegetation (Posey 1988; Daehler and Strong 1996). Invasive Spartina forms dense, monospecific stands that eliminate open mudflats, thus decreasing plant and animal biomass and diversity. The aggressive Spartina competes for space with native salt marsh vascular and nonvascular plants and may result in a shift in the invertebrate community composition from species that feed on algae to detritivores (Levin et al. 2006). These changes have already been observed in San Francisco Bay, California, and Willapa Bay, Washington (Buchanan 2003). It is, therefore, reasonable to suggest that similar mechanisms operate in the Humboldt Bay salt marshes and our results illustrate how the removal of S. densiflora can lead to significant increases in the abundance and diversity of macro- and micro-algae. These findings further suggest that the S. densiflora invasion has a negative effect on the growth and productivity of salt marsh algae and, potentially, the invertebrate communities that rely on algae as their principal food source.



Figure 5. Green filamentous alga, *Rhizoclonium riparium* (a) growing in the mudflats of Humboldt Bay National Wildlife Refuge and (b) under a light microscope. Photos by Simona Augyte.



Figure 6. Green filamentous alga, *Chaetomorpha linum* (a) growing in the mudflats of Humboldt Bay National Wildlife Refuge and (b) under a light microscope. Photos by Simona Augyte.



Figure 7. Vaucheria longicaulis growing in the mudflats of Humboldt Bay National Wildlife Refuge and (b) under a light microscope showing reproductive features. Photos by Simona Augyte.

### ACKNOWLEDGMENTS

We thank Frank J. Shaughnessy for advice on the study design, Bethany Baibak for assistance in the field, and the U.S. Fish and Wildlife Service for funding this study.

Simona Augyte is a doctoral student at the University of Connecticut investigating the ecophysiology and thermal tolerance of kelps in and around Long Island Sound with warming sea surface temperatures. While working on her M. Sc. in Biology at Humboldt State University on the marine intertidal algal flora of Northern California and Southern Oregon, she conducted this study with the U.S. Fish and Wildlife Service.

Andrea Pickart is an ecologist with the U.S. Fish and Wildlife Service. Her areas of study include dune and estuarine ecology, invasive species, and restoration.

### LITERATURE CITED

Bertness, M.D. 1988. Peat accumulation and success of marsh plants. Ecology 69:703-713.

- Bertness, M.D., and R. Callaway. 1994. Positive interactions in communities. Trends in Ecology and Evolution 9:191-193.
- Blum, J.L. 1968. Salt marsh Spartinas and associated algae. Ecological Monographs 38:199-221.
- Buchanan, J.B. 2003. Spartina invasion of Pacific coast estuaries in the United States: implications for shorebird conservation. Wader Study Group Bulletin 100:47-49.
- Buchsbaum, R.N., L.A. Deegan, J. Horowitz, R.H. Garritt, A.E. Giblin, J.P. Ludlam, and D.H. Shull. 2009. Effects of regular salt marsh haying on marsh plants, algae, invertebrates and birds at Plum Island



Figure 8. Cyanobacterial mats growing in the mudflats of Humboldt Bay National Wildlife Refuge and (b) under a light microscope. Photos by Simona Augyte.



Figure 9. Diatoms growing in the mudflats of Humboldt Bay National Wildlife Refuge and (b) under a light microscope. Photos by Simona Augyte.

Sound, Massachusetts. Wetlands Ecology and Management 17:469-487.

- Carpenter E., C.D. Van Raalte, and I. Valiela. 1978. Nitrogen fixation by algae in a Massachusetts salt marsh. Limnology and Oceanography 23:318-327.
- Daehler C.C., and D.R. Strong. 1996. Status, prediction and prevention of introduced cordgrass Spartina spp. invasions in Pacific estuaries, USA. Biological Conservation 78:51-58.
- Gabrielson, P.W., T.B. Widdowson, and S.C. Lindstrom. 2004. Keys to the Seaweeds and Seagrasses of Oregon and California, North of Point Conception. Phycological Contribution 6, Department of Botany, University of British Columbia, Vancouver, B.C., Canada.

Gabrielson, P.W., T.B. Widdowson, and S.C.

Lindstrom. 2006. Keys to the Seaweeds and Seagrasses of Southeast Alaska, British Columbia, Washington and Oregon. Phycological Contribution 7, Department of Botany, University of British Columbia, Vancouver, B.C., Canada.

- Grosholz, E.D., L.A. Levin., A.C. Tyler, and C. Neira. 2009. Changes in community structure and ecosystem function following Spartina alterniflora invasion of Pacific estuaries. Pp. 23–40 in B.R. Silliman, E.D. Grosholz, and M. Bertness, eds., Human Impacts on Salt Marshes; a Global Perspective. University of California Press, Berkeley and Los Angeles, CA.
- Jones, K. 1974. Nitrogen fixation in a salt marsh. Journal of Ecology 62:553-565.
- Kittelson, P.M., and M.J. Boyd. 1997. Mechanisms of expansion for an introduced

species of cordgrass, Spartina densiflora, in Humboldt Bay, California. Estuaries 20:770-778.

- Lagarde, L. 2012. Invasive Spartina densifiora Brongn. Reduces Primary Productivity in a Northern California Salt Marsh. M.S. thesis, Humboldt State University, Arcata, CA.
- Leonard, L.A., and M.E. Luther. 1995. Flow hydrodynamics in tidal marsh canopies. Limnology and Oceanography 40:1474-1484.
- Levin, L.A., C. Neira, and E.D. Grosholz. 2006. Invasive cordgrass modifies wetland trophic function. Ecology 87:419-432.
- McCormick, P.V., and R.J. Stevenson. 1991. Mechanisms of benthic algal succession in lotic environments. Ecology 72:1835-1848.

- Mitchell, M.L. 2012. A Comparison of Terrestrial Invertebrate Communites in Spartina-Invaded and Restored Humboldt Bay Salt Marshes. M.S. thesis. Humboldt State University, Arcata, CA.
- Posey, M.H. 1988. Community changes associated with the spread of an introduced seagrass, Zostera japonica. Ecology 69:974-983.
- Seliskar, D.M., J.L. Gallagher, D.M. Burdick, and L.A. Mutz. 2002. The regulation of ecosystem functions by ecotypic variation in the dominant plant: a Spartina alterniflora

salt-marsh case study. Journal of Ecology 90:1-11.

- Silliman, B.R., and M.D. Bertness. 2002. A trophic cascade regulates salt marsh primary production. PNAS 99:10500-10505.
- Sullivan, M.J., and F.C. Daiber. 1976. Light, nitrogen and phosphorus limitation of edaphic algae in a Delaware salt marsh. Ecology 18:79-88.
- Sullivan, M.J., and C.A. Moncreiff. 1990. Edaphic algae are an important component of salt marsh food-webs: evidence from

multiple stable isotope analyses. Marine Ecology Progress Series 62:149-159.

- Van Raalte, C.D., I. Valiela, and J.M. Teal. 1976. Production of epibenthic salt marsh algae: Light and nutrient limitation. Limnology and Oceanography 21:862-872.
- Whitcraft, C.R., and L.A. Levin. 2007. Regulation of benthic algal and animal communities by salt marsh plants: impact of shading. Ecology 88:904-917.
- Zedler, J.B. 1980. Algal mat productivity: comparisons in a salt marsh. Estuaries 3:122-131.