APPENDIX.
Supplementary Information to selected Proposals
CLAS Committee on Curricula and Courses
November 9, 2004

2004-149 Plan of study for History Minor

HISTORY MINOR PLAN OF STUDY 2005-2006 and After
Date ______________ Name __________________________ ________________
Peoplesoft. # __________________

Local Address
___ _______ Telephone

Major ___________________ Fulfilling requirements of the Catalog for the year
________ Graduation (Mo/Yr) __

Completion of a minor requires that a student earn a C (2.0) or better in each of the
required courses for that minor. A maximum of 3 credits towards the minor may be
transfer credits of courses equivalent to University of Connecticut courses.
Substitutions are not possible for required courses in a minor.

History Minor Requirements:
Students must pass five courses (15 credits), by completing either
(A) five courses across at least three distribution groups, or
(B) HIST 211 and four courses across at least three distribution groups.

HIST 211: Historian’s Craft (circle if Plan B)

History Distribution Groups (circle courses taken):
Group A - Ancient, Medieval, and Early Modern: HIST 203, 212 (or ANTH 257),
213 (or CAMS 253), 214 (or CAMS 254), 216 (or CAMS 255), 217 (or CAMS 243),
218 (or CAMS 256, HEB 218, JUDS 218), 219, 220, 250, 251, 255, 257 (or CAMS
250), 261, 267, 271, 272, 273, 274.
Group B - Modern Europe: HIST 203, 206 (or SCI 206), 208 (or WS 208), 209 (or
HDFS 279), 225, 228, 229, 252, 253, 254, 256, 258, 259, 262, 264, 265, 269, 279,
291.
Group C - United States: HIST 206 (or SCI 206), 207, 210 (or WS 210), 215 (or WS 215), 227, 233, 234, 235, 236, 237, 238, 239, 240, 241 (or URBN 241), 242, 243, 244, 245, 246, 247, 248, 249, 253, 260, 266, 268 (or AASI 268), 278 (or PRLS 220), 284 (or PRLS 221), 294 (or AASI 294).

Group D - Africa, Asia, Latin America, and Middle East: HIST 204, 205, 221, 222, 223, 224, 226, 253, 266, 275, 276, 277 (or AASI 277), 278 (PRLS 220), 280, 281, 282, 283, 285, 286, 287 (or AASI 287), 288 (or AASI 288), 289, 290.

Variable Topics Courses (HIST 201, 270, 292, 293, 295, 296, 297, 298, 299, or a graduate level History course) may be applied to any of the four distribution groups as determined by course content and with the Undergraduate Director’s consent.

List course number and title of each variable topics course taken (201, 270, 292, 293, 295, 296, 297, 298, 299, or a graduate level history course) and its group as assigned by the Undergraduate Director:

<table>
<thead>
<tr>
<th>Semester, Year</th>
<th>Course # (HIST XXX)</th>
<th>Course Title</th>
<th>Group A, B, C, or D?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

I approve this plan (signed): ____________________________
Undergraduate Director

_______________________________ Student

2004-179 Syllabus for MARN200 “The Hydrosphere”

1. Introduction & Unit Conversions

2. Origins of the atmosphere and the oceans

3. Properties of water
 Emphasis on the uniqueness of water and how this has influenced biogeochemistry and climate
 • Physical-chemical properties
• Phase diagrams

4. Mechanisms of Flow & Mixing
 Laminar vs turbulent flows
 • Advection/diffusion/dispersion
 • Stability
 • Fluxes across phase boundaries

5. The Global water cycle
 • The geologic cycling of water
 • Models of the hydrologic cycle
 • Global distillation
 • Water cycles under scenarios of future climate

Reservoirs: Sections 6 to 11 are an overview of the physics, residence times, biology, geology and chemistry of water reservoirs with emphasis on how they connect.

6. Atmosphere
 • Evaporation/precipitation mechanisms and global rates
 • Wet and dry deposition
 • Chemical transport/scavenging rates

7. Drainage Basins

8. Freshwater wetlands & lakes

9. Rivers & estuaries

10. Ground water

11. The oceans

12. Monitoring our hydrosphere
 • Gauges
 • Buoys
 • Remote sensing

13. Water as a critical resource
 • Distribution of water types
 • Anthropogenic effects on the water cycle
 • Desalination systems
 • Groundwater contamination
- Transport of chemicals
- Timescales involved with responses to these perturbations

End of Appendix for November 9, 2004