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Abstract
The paper addresses the issue of online diagnosis and prognosis of emerging
faults in human-engineered complex systems. Specifically, the paper reports
a dynamic data-driven analytical tool for early detection of incipient faults
and real-time estimation of remaining useful fatigue life in polycrystalline
alloys. The algorithms for fatigue life estimation rely on time series data
analysis of ultrasonic signals and are built upon the principles of symbolic
dynamics, information theory and statistical pattern recognition. The
proposed method is experimentally validated by using 7075-T6 aluminium
alloy specimens on a special-purpose fatigue test apparatus that is equipped
with ultrasonic flaw detectors and an optical travelling microscope. The
real-time information, derived by the proposed method, is useful for
mitigation of widespread fatigue damage and is potentially applicable to life
extending and resilient control of mechanical structures.

Keywords: symbolic time series analysis, anomaly detection, fatigue
damage, ultrasonic sensing

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Recent developments and maturity of scientific theories have
demonstrated that information-based detection, diagnosis and
prognosis of failures is essential for online estimation of
structural damage and quantification of structural integrity
for maintenance of safe and reliable operation of human-
engineered complex systems. This paper addresses the issues
of early diagnosis and prognosis for advanced warning of
incipient and gradually emerging faults in complex dynamical
systems. Fatigue damage is one of the most commonly
encountered sources of structural degradation and could
potentially cause catastrophic failures in mechanical systems
[1].

The current state-of-the-art in fatigue life estimation is
largely based on model-based analysis; however, no existing
fatigue damage model, solely based on the fundamental
principles of physics, can adequately capture the dynamical
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behaviour of fatigue damage at the grain level [2]. In
general, model-based approaches are critically dependent on
initial defects in the material microstructure, which may
randomly form crack nucleation sites and are difficult to model
[1, 3]. Small deviations in initial conditions and critical
parameters may produce large bifurcations in the expected
dynamical behaviour of fatigue damage [4]. In addition,
fluctuations in usage patterns (e.g., random overloads) and
environmental conditions (e.g., temperature and humidity)
may adversely affect the service life of mechanical systems.
From this perspective, a data-driven statistical method is
presented for online estimation of remaining useful fatigue
life in mechanical structures as augmentation of the authors’
earlier work [5] that addressed early detection of incipient
fatigue damage in polycrystalline alloys.

The random distribution of micro-structural flaws in
identically manufactured components can produce a wide
uncertainty in the crack initiation phase [1]. For example,
inclusions, casting defects and machining marks possibly
originated during fabrication may cause stress augmentation at
certain locations. These unavoidable surface and sub-surface
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defects constitute integral parts of the material microstructure
of the operating machinery. As such, evolution of fatigue
damage is described as a stochastic phenomenon [1, 3] and
a stochastic measure of fatigue crack growth has also been
proposed in the literature [6, 7]. This stochastic nature
of fatigue damage emphasizes the need for online updating
of information using sensing devices that are sensitive to
small microstructural changes and are capable of issuing
early warnings during fatigue damage evolution [8]. As
such, the above discussions evince that time series analysis
of sensor data is essential for real-time monitoring of fatigue
in mechanical structures [9].

Impedance of the ultrasonic signals has been shown to
be very sensitive to small microstructural changes occurring
during the early stages of fatigue damage [10–13]. As
such, ultrasonic sensing has been adopted to monitor the
evolution of fatigue damage in ductile aluminium alloy 7075-
T6 test specimens. The paper presents the application of
the symbolic time series analysis (STSA) method [14, 15]
to the ultrasonic signals for real-time detection of fatigue
damage and estimation of the remaining useful fatigue life.
STSA for anomaly detection is an information-theoretic
pattern identification tool that is built upon a fixed-structure,
fixed-order Markov chain [15]. Recent literature [16, 17]
has reported experimental validation of STSA-based pattern
identification by comparison with other existing techniques
such as principal component analysis (PCA) and artificial
neural networks (ANN); STSA has been shown to yield
superior performance in terms of early detection of anomalies,
robustness to noise, and real-time execution in different
applications such as electronic circuits, mechanical vibration
systems and fatigue damage in polycrystalline alloys.

This paper addresses the issues of fatigue damage
monitoring and remaining life estimation as the following two
related problems:

(1) The forward (analysis) problem of anomaly detection and
assimilation of the respective statistical information.

(2) The inverse (synthesis) problem of anomaly identification
(e.g., determination of ranges of anomalous parameters).

As a partial solution to the forward problem, recent
literature has reported successful application of the STSA
method [15] to early detection of fatigue damage [5, 17].
The procedure is experimentally validated by using 7075-T6
aluminium alloy specimens on a special-purpose fatigue test
apparatus that is equipped with ultrasonic flaw detectors and
an optical travelling microscope [18]. This paper addresses
both the forward and inverse problems as augmentation of
the reported work on part of the forward problem (i.e.,
early detection of fatigue damage [5]). The underlying
statistical concepts and the theory of fatigue life estimation
are experimentally validated.

The paper is organized in six sections, including the
present section. Section 2 reviews the underlying concepts and
essential features of symbolic time series analysis for anomaly
detection [15, 19]. Section 3 formulates the anomaly detection
problem. Section 4 describes the experimental apparatus on
which the anomaly detection method is validated in real time.
Section 5 presents the pertinent results of both the forward
problem and the inverse problem. The paper is concluded in
section 6 along with recommendations for future research.

2. Review of STSA-based anomaly detection

This section presents the underlying concepts and essential
features of STSA [14] for anomaly detection in complex
dynamical systems [15]. While the details are reported in
previous publications [15, 19], the key features of STSA are
briefly summarized here for clarity and completeness of this
paper.

In the STSA procedure, a data sequence is converted
to a symbol sequence by partitioning a compact region of
the phase space of the dynamical system, over which the
trajectory evolves, into finitely many discrete blocks. Each
block is labelled as a symbol, where the symbol set � is
called the alphabet that consists of |�| different symbols.
(Note: |�| � 2.) As the system evolves in time, it travels
through or touches various blocks in its phase space and the
corresponding symbol σ ∈ � is assigned to it, thus converting
the data sequence into a symbol sequence.

2.1. The two-time scale modelling

The sampling frequency and data acquisition process is
required to be faster than the time period of damage evolution.
Therefore, fatigue damage monitoring is formulated as a two-
time-scale problem: the fast time scale is related to the
response time of machinery operation. Over the span of
a given time series data sequence, the structural dynamic
behaviour of the system is assumed to remain invariant, i.e.,
the process has stationary dynamics at the fast time scale.
In other words, the variations in the internal dynamics of
the system are assumed to be negligible on the fast time
scale. The slow time scale is related to the time span over
which the process may exhibit non-stationary dynamics. An
observable non-stationary behaviour can be associated with
anomalies evolving at the slow time scale. In general, a long
time span in the fast time scale is a tiny (i.e., several orders
of magnitude smaller) interval in the slow time scale. For
example, evolution of fatigue damage in structural materials
(causing a detectable change in the dynamics of the system)
occurs on the slow time scale (possibly in the order of months
or years); the fatigue damage behaviour is essentially invariant
on the fast time scale (approximately in the order of seconds or
minutes). Nevertheless, the notion of fast and slow time scales
is dependent on the specific application, loading conditions
and operating environment. As such, with the perspective of
fatigue monitoring, sensor data acquisition is done on the fast
time scale at different slow time epochs separated by regular
intervals. Thereby, anomaly detection is done over the slow
time scale from the information generated by the STSA of the
data collected at different slow time epochs. A pictorial view
of the two time scales is presented in figure 1.

The key concepts of STSA-based anomaly detection
procedure are summarized below.

(1) Time series data acquisition from appropriate sensor(s)
at time epoch t0, i.e., the nominal condition, at which the
system is assumed to be in the healthy state.

(2) Generation of wavelet transform coefficients, obtained
with an appropriate choice of the wavelet basis [20]. A
crucial step in symbolic time series analysis is partitioning
of the phase space for symbol sequence generation [14].
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Figure 1. Pictorial view of the two time scales: (i) slow time scale
of anomaly evolution and (ii) fast time scale for data acquisition and
signal conditioning.

Since the structure of phase space can become very
complex for high dimensional systems or may even be
unknown for un-modelled systems, an alternative way
is to extract information from the time series data of
appropriate sensors. Once the time series data set is
collected, it is transformed into the wavelet domain by
appropriate choice of scale(s) and basis [19]. The paper
has adopted a wavelet-based partitioning approach [15]
for the construction of symbol sequences from the time
series data. The wavelet transform [20] largely alleviates
the difficulties of phase-space partitioning in the case of
high dimensions and is particularly effective with noisy
data from high-dimensional dynamical systems [19].

(3) Maximum entropy partitioning of the wavelet space at the
nominal condition [19]. The partitioning is done such
that the regions with more information are partitioned
finer and those with sparse information are partitioned
coarser. This is achieved by maximizing the Shannon
entropy, which is defined as:

S = −
|�|∑
i=1

pi log(pi)

where pi is the probability of the ith segment of the
partition and summation is taken over all segments. The
partitioning is fixed for subsequent time epochs. Each
segment of the partitioning is assigned a particular symbol
and a symbol sequence is generated.

(4) Calculation of the probability vector p0 at time epoch
t0 whose elements represent the visiting probabilities of
the segments of the partitioning. As a consequence of
maximum entropy, p0 has uniform distribution (i.e., all
elements of p0 are equal).

(5) Time series data acquisition at subsequent slow time
epochs, t1, t2, . . . , tk, . . . , and their conversion to
the wavelet domain to generate respective symbolic
sequences based on the partitioning at time epoch t0.

(6) Generation of the probability vectors p1, p2, . . . , pk, . . .

at slow time epochs, t1, t2, . . . , tk, . . . from the respective
symbolic sequences

(7) Computation of scalar anomaly measures
ψ1, ψ2, . . . , ψk, . . . at time epochs, t1, t2, . . . , tk, . . .

based on evolution of these probability vectors and by
defining an appropriate distance function with respect to
the nominal condition (see [5]).

3. Anomaly detection problem formulation

Having discussed the tools and techniques of STSA, this
section outlines the formulation of the anomaly detection

Figure 2. Measurement of the physical process by a set of
observable parameters o = {o1, o2, . . . , or}.

problem (including fault diagnosis and prognosis). In diverse
applications of science and engineering, high dimensionality
of the phase space, uncertain chaotic behaviour [4], nonlinear
spatial-temporal stochastic processes and random noisy
excitations often restrict the applications of the fundamental
laws of physics to accurately determine a dynamical model for
such complex emergent systems because of the infeasibility
in achieving requisite modelling accuracy and precision [21].
As such, the problem is simplified using observation-based
estimation of the underlying mathematical structure of the
system and its relevant parameters. As an illustration, a map
of the dynamical process (in discrete time) is described as:

xk+1 = ϕk(xk, uk, ηk) (1)

yk = γ(xk, uk) + υk (2)

where k is the discrete time index; ϕ describes the time
evolution of the state trajectory; γ represents the measurement
model; x is the state vector in the phase space; u is the
input excitation vector; y is the measurement vector; η
is the (possibly non-additive) process noise and υ is the
measurement noise. Evolution of the dynamical process
generates time series data of system outputs x0, x1, . . . , xk, . . .

starting from an initial point x0. Since x is usually hidden and
ϕ is generally unknown especially for anomalous systems,
the problem needs to be investigated by alternative means of
extraction of relevant information from the time series data set
Y = {y0, y1, . . . , yk, . . .} of selected observable outputs (e.g.,
sensor data), as shown in figure 2.

As stated earlier in section 1, the issues of fatigue damage
monitoring and remaining life estimation are addressed as two
problems: (1) the forward (or analysis) problem and (2) the
inverse (or synthesis) problem. The forward problem consists
of prediction of outcomes, given a priori knowledge of the
underlying model parameters. In the absence of an existing
model this problem requires generation of behavioural patterns
of the system evolution through an off-line analysis of an
ensemble of the observed time series data. On the other
hand, the inverse problem consists of estimation of critical
parameters characterizing the system under investigation using
the actual observations. Inverse problems arise in different
engineering disciplines such as geophysics, structural health
monitoring, weather forecasting and astronomy. Inverse
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problems often become ill-posed and challenging due to the
following reasons: (a) high dimensionality of the parameter
space under investigation and (b) in the absence of a unique
solution where change in multiple parameters can lead to the
same observations.

In the presence of sources of uncertainties, any parameter
inference strategy requires estimation of parameter values and
also the associated confidence intervals, or the error bounds,
to the estimated values. As such, inverse problems are usually
solved using the Bayesian methods that allow observation-
based inference of parameters and provide a probabilistic
description of the uncertainty of inferred quantities. A good
discussion of inverse problems is presented by Tarantola [22].

In the context of fatigue damage, the tasks and solution
steps of these two problems as followed in this paper are
discussed below.

(1) Forward problem: the primary objective of the forward
problem is identification of the changes in behavioural
patterns of the system dynamics due to evolving fatigue
damage on the slow time scale. Specifically, the forward
problem aims at detecting the deviations in the statistical
patterns in the time series data, generated at different time
epochs in the slow time scale, from the nominal behaviour
pattern. The solution procedure of the forward problem
requires the following steps:

(F1) Collection of time series data sets (at fast time scale)
from the available sensor(s) at different slow time
epochs;

(F2) Analysis of these data sets using the STSA method
as discussed in section 2 to generate pattern vectors
defined by the probability distributions at the
corresponding slow time epochs. The profile of
anomaly measure is then obtained from the evolution
of this pattern vector from the nominal healthy
condition [5];

(F3) Generation of a family of such profiles from multiple
experiments performed under identical conditions to
construct a statistical pattern of anomaly growth.
Such a family represents the uncertainty in the
evolution of anomalies in mechanical systems due
to its stochastic nature. This step is required in
systems where there is a source of parametric or non-
parametric uncertainty. In the case of fatigue damage,
the uncertainty arises from the random distribution of
microstructural flaws in the body of the component
leading to stochastic behaviour [1].

(2) Inverse problem: the objective of the inverse problem
is to infer the anomalies and to provide estimates of the
remaining useful fatigue life from the observed time series
data and system response in real time. The decisions
are based on the information derived in the forward
problem. Specifically, in the context of fatigue damage,
identical structures operated under identical loading
and environmental conditions show different trends in
the evolution of fatigue due to surface and sub-surface
material uncertainties. Therefore, as a precursor to the
solution of the inverse problem, generation of an ensemble
of data sets is required during the forward problem for
multiple fatigue tests conducted under identical operating

conditions. Damage estimates can be obtained at any
particular instant in a real-time experiment with certain
confidence intervals using the information derived from
the ensemble of data sets of fatigue damage evolution
generated in the forward problem [15]. Furthermore, a
control policy can be designed based on these estimates for
life extension and prevention of catastrophic failures [23].
The solution procedure of the inverse problem requires the
following steps:

(I1) Collection of time series data sets (in the fast time
scale) from the available sensor(s) at different slow
time epochs up to the current time epoch in a real-time
experiment as in step F1 of the forward problem;

(I2) Analysis of these data sets using the STSA method
as discussed in section 2 to generate pattern
vectors defined by probability distributions at the
corresponding slow time epochs. The value of
anomaly measure at the current time epoch is then
calculated from the evolution of this pattern vector
from the nominal healthy condition [5]. The
procedure is similar to the step F2 of the forward
problem. As such, the information available at
any particular instant in a real-time experiment is
the value of the anomaly measure calculated at that
particular instant;

(I3) Detection, identification and estimation of an
anomaly (if any) based on the computed anomaly
measure and the statistical information derived in step
F3 of the forward problem. More details of this step
are discussed in section 5.

A schematic of the entire framework for the anomaly
detection problem in mechanical systems is shown in figure 3.
As shown in figure 3, the forward problem section involves
the generation of ultrasonic data sets from fatigue experiments
which are analysed using the STSA method to produce a profile
of the anomaly measure (see section 2) that represents the
evolution of fatigue damage. Following the same procedure,
several experiments are conducted under identical conditions
to generate a family of anomaly measure profiles. Such
a family represents the stochastic behaviour of the fatigue
damage evolution on a slow time scale (see section 5.1).

This family of anomaly measure profiles is analysed in
the inverse problem section to generate the requisite statistical
information (see section 5.2). The information available in
real time is the value of the anomaly measure obtained from
the analysis of ultrasonic data at any particular time epoch.
This information is entered in the inverse problem section
that provides the estimates of the expended life fraction. The
estimates can only be obtained within certain bounds at a
particular confidence level. The online statistical information
on the damage status is significant because it can facilitate early
scheduling for the maintenance or repair of critical components
or to prepare an advance itinerary of the damaged parts. The
information can also be used to design control policies for
damage mitigation and life extension. The entire architecture
has been built within the MATLAB and C++ environment.
The proposed architecture in figure 3 is also applicable to
other engineering fields for anomaly detection.
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Figure 3. Framework of STSA based anomaly detection in mechanical systems.

Figure 4. Computer-instrumented apparatus for fatigue testing.

4. Description of the experimental apparatus

The experimental apparatus, shown in figure 4, is a
special-purpose uniaxial fatigue testing machine, which is
operated under load control or strain control at speeds up
to 12.5 Hz; a detailed description of the apparatus and
its design specifications are reported in [18]. The test
specimens are subjected to tensile–tensile cyclic loading by a
hydraulic cylinder under the regulation of computer-controlled
electro-hydraulic servo-valves. The feedback signals that
are generated from the load cell and the extensometer
are processed by signal conditioners that include standard
amplifiers and signal processing units. The controller
governs the hydraulic servo-valve for operation under specified
load and position limits. The damage estimation and life
prediction subsystem consists of data analysis algorithms and
the associated computer hardware.

Figure 5 shows a single-edge notched specimen of 7075-
T6 aluminium alloy used for testing in the fatigue damage test
apparatus. The specimens are 3 mm thick and 50 mm wide

Figure 5. Cracked specimen with a side notch.

Figure 6. Schematic of ultrasonic sensors on a test specimen.

with a slot on one side of 1.58 mm diameter and 4.57 mm
length. The notch is made to increase the stress concentration
factor that ensures crack initiation and propagation at the notch
end. The travelling optical microscope, shown as a part of the
test apparatus in figure 4, provides direct measurements of
the visible portion of a crack. The test specimens have been
subjected to sinusoidal loading under tension–tension mode
(i.e., with a constant positive offset) at a frequency of 12.5 Hz.
The dc offset is provided in the load cycling to ensure that the
specimen is always under tension.

A piezoelectric transducer is used to inject ultrasonic
waves in the specimen and a receiver transducer is placed
on the other side of the notch to measure the transmitted
signal, as seen in figure 6. The ultrasonic signals produced
are 10 MHz sinusoidal waves and they are triggered during
a very short portion at the peak of every load cycle. Since
material characteristics (e.g., voids, dislocations and short
cracks) influence ultrasonic impedance, a small fault in the
specimen is likely to change the signature of the signal at
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the receiver end. Therefore, the signal can be analysed using
STSA to capture minute changes during the early stages of
fatigue damage [17]. A significant amount of damage (e.g.,
dislocations, short cracks and microstructural defects) occurs
before the crack appears on the surface of the specimen
when it is observed by the microscope [24]. The resulting
damage can cause detectable attenuation and/or distortion of
the ultrasonic waves [10, 17]. The crack propagation stage
starts when this microstructural damage eventually develops
into a single large crack. Subsequently, the crack growth
rate increases rapidly and when the crack becomes sufficiently
large, complete attenuation of the ultrasonic signal occurs at
the receiver end. An elaborate description of the properties of
ultrasonic waves in solid media is provided by Rose [25].

5. Experimental procedure, application of STSA
and results and discussion

This section provides a detailed description of experimental
procedure, application of the STSA method to the time series
data of ultrasonic signals and the results and discussion for both
the forward and the inverse problems. The solution procedures
for these problems are provided below.

5.1. Solution procedure for the forward problem and results

This section presents a detailed description of the solution
procedure for the forward problem. As discussed earlier,
the primary objective of the forward problem is to identify
the behavioural pattern of damage evolution in a complex
dynamical system involving the uncertainties (if any) which
can be both parametric or non-parametric in nature.

5.1.1. Sources of uncertainties. In the case of fatigue
damage, as considered in this paper, the sources of
uncertainties are assumed to include:

(a) material inhomogeneities such as voids or inclusions,
(b) surface defects including finishing marks that usually

develop from the machining process, nonuniform
polishing and other deformities,

(c) sub-surface defects originating due to random distribution
of microstructural flaws like dislocations and grain
boundaries,

(d) variations in the critical dimensions of the components
resulting from the non-zero tolerances of the cutting tools
used in the fabrication process,

(e) small fluctuations in the environmental conditions such as
humidity and temperature,

(f) small fluctuations in the operating conditions due to
noisy environment and finite precision of the mechanical
system.

In the presence of the above uncertainties, a complete
solution of the anomaly detection problem cannot be obtained
in the deterministic setting because the profile of anomaly
progression would not be identical for similarly manufactured
components. In that case, the problem can be represented in
the stochastic setting, where a family of anomaly progression
profiles is generated from multiple experiments conducted
under identical conditions [26]. As such, the requirement

of the forward problem is to generate a pattern that consists of
a family of anomaly progression profiles. Each member of this
family represents the anomaly measure profile of a particular
sample. This profile is generated from a fatigue test that is
conducted to observe the entire service life of the specimen
from the starting healthy condition to the eventual failure.

5.1.2. Experimentation and data analysis procedure using
STSA. The fatigue tests have been conducted on 7075-T6
aluminium specimens at 12.5 Hz frequency. The specimens
are subjected to a sinusoidal load cycling where the maximum
and minimum loads are 89.3 MPa and 4.85 MPa at the nominal
condition. Ultrasonic waves with a frequency of 10 MHz are
triggered at the peak of each sinusoidal load cycle where the
stress is maximum and the crack is open causing maximum
attenuation of the ultrasonic waves. Since the ultrasonic
frequency is much higher than the load cycling frequency,
data collection is performed for a very short interval in the time
scale of load cycling. The slow time epochs have been chosen
to be 1000 load cycles (i.e., ∼80 s) apart. At the onset of each
slow time epoch, the ultrasonic data points are collected on
the fast time scale of 50 cycles (i.e., ∼4 s), which produced a
string of N = 15 000 data points. It is assumed that during the
fast time scale of 50 cycles, the system remains in a stationary
condition and no major changes occur in the fatigue damage
behaviour. These sets of time series data points collected
at different slow time epochs are analysed using the STSA
method, as described in section 2, to calculate the anomaly
measures at those slow time epochs.

The nominal condition at the slow time epoch t0 is chosen
to be ∼0.5 kilocycles to ensure that the electro-hydraulic
system of the test apparatus had come to a steady state and
it is assumed that no significant damage occurred till that
point. This nominal condition is chosen as a benchmark where
the anomaly measure is chosen to be zero. The anomalies
at subsequent slow time epochs, t1, t2, . . . , tk, . . . , are then
calculated using STSA to yield a profile of anomaly measure
representing the progression of fatigue damage on the slow
time scale. It is emphasized that the anomaly measure is
relative to the nominal condition which is fixed in advance
and should not be confused with the actual damage at an
absolute level. The data collection is stopped at a time epoch
tf considered as the final failure point where the ultrasonic
energy is attenuated to 2% of the nominal condition. The
energy of the signal is defined as:

E =
N∑

i=1

|s(i)|2|

where |s(i)| is the magnitude of the ith data point of
the ultrasonic signal. Once the failure point is reached
the specimen is already under crack propagation stage and
a sufficiently large crack has developed such that it is
no longer useful and is considered broken. Following
the above procedure, a family of profiles is generated for
multiple experiments conducted under identical experimental
conditions.

For the STSA procedure, the alphabet size for partitioning
has been chosen to be |�| = 8 while the wavelet basis is chosen
to be ‘gaus2’ [27]. Increasing the alphabet size |�| does
not improve the results and creates a large number of states
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Figure 7. Statistical behaviour of fatigue damage represented by a
family of anomaly measure profiles generated by 40 identical
experiments.

many of them having very small or zero probabilities. The
algorithm is readily implemented in real time. This algorithm
enables detection of crack initiation with only eight states
and is computationally very fast in the sense that the code
execution time is several orders of magnitude smaller than the
interval between two adjacent slow time epochs. The wavelet
basis, ‘gaus2’, provides better results than the wavelet bases of
the Daubechies family [20] because the ‘gaus2’ wavelet base
closely matches the shape of the ultrasonic signals [19].

5.1.3. Generation of statistical patterns. Similar to the
procedure described above, ultrasonic time series data are
generated under both nominal and anomalous conditions
at different slow time epochs for multiple experiments
conducted on identically manufactured specimens under
identical experimental conditions. STSA-based analysis of
the data from each of these experiments produces a profile of
anomaly measure, thereby generating an ensemble of anomaly
measure profiles for multiple experiments. This family of
profiles represents a stochastic pattern of the progression of
fatigue damage under identical experimental conditions. To
this effect, � = 40 experiments have been conducted and the
profiles of anomaly measures are shown in figure 7. The
family of the anomaly measure profiles of these experiments
is plotted versus a normalized variable, expended life fraction,
τe = (

t−t0
tf −t0

)
, where t is the actual number of cycles, t0

is the nominal condition chosen to be ∼0.5 kilocycles for
each experiment and tf is the final time of failure for each
experiment as described in the previous section. (Note: the
expended life fraction τe is normalized between 0 and 1.)
It is also noted that an infinite number of experiments are
required to generate the true stochastic pattern of fatigue
damage. This paper reports the results based on � = 40
experiments for limitations in a laboratory environment. It is
assumed that the statistics generated by these finite numbers
of experiments closely represent the behaviour of the true
population consisting of infinite experiments.

For each individual experiment, the state probability
vector p0 is generated at the nominal condition t0 by

partitioning the wavelet domain using the maximum entropy
principle [5]. As a consequence, p0 has uniform distribution,
i.e. each element has equal probability. This fact demonstrates
the fact that there is maximum uncertainty about the origin of
the fatigue damage or the available information on potential
damage is minimal at the nominal condition. In contrast,
for the completely broken stage of the specimen, the entire
probability distribution is concentrated on only one element
of the state probability vector, i.e. delta distribution, which
indicates a very large attenuation of the ultrasonic signal [17].
This phenomenon of the sample being completely broken
signifies certainty of information and hence zero entropy.
Therefore, as the fatigue crack damage evolves, the uniform
distribution (i.e., maximum entropy) under nominal condition
degenerates towards the delta distribution (i.e., zero entropy)
for the broken specimen. Since, p0 has uniform distribution
for all experiments, the statistical property is identical for all
experiments at the nominal condition. The variations in the
evolution of fatigue damage, as seen in figure 7, are caused
due to various uncertainties listed earlier.

As seen in figure 7, each profile has a smaller slope of the
anomaly measure during the initial period of fatigue damage,
i.e., the crack initiation region. Anomaly measure gradually
increases during this period where small microstructural
damage occurs in the specimen. During the end stage of
this period small micro cracks eventually develop into a single
large crack leading to a transition from the crack initiation
stage to the crack propagation stage (approx. from τe = 0.5
to τe = 0.7). This phenomenon is observed by a sharp change
in the slope of the anomaly measure profile of each sample.
Once the crack propagation stage starts the fatigue damage
occurs rapidly eventually leading to the final failure. The
two regions of crack initiation and crack propagation can
be clearly identified from figure 7. The family of anomaly
measure profiles, generated in the forward problem, is used in
the analysis of the inverse problem for estimating the expended
life fraction (τe) at any particular time epoch as presented in
the next section.

5.2. Solution procedure of the inverse problem and results

The objective of the inverse problem is identification of
anomalies and estimation of the fault parameters based on
the family of curves generated in the forward problem. It is
essential to detect the evolving fatigue damage and to estimate
the remaining useful life during the operating period of the
mechanical system, so that appropriate remedial action(s) can
be taken before the onset of widespread fatigue propagation
leading to complete failure. Therefore, estimation of fatigue
damage is crucial for scheduled maintenance. The steps
required for the solution procedure of the inverse problem
are listed in section 3 and are further elaborated in this section.

5.2.1. Generation of the pattern matrix. In an online
experiment, time series data sets (at fast time scale) of the
ultrasonic sensors are generated at different slow time epochs
up till the current time epoch. These data sets are analysed
using the STSA method as discussed in section 2 to generate
the probability distributions at the corresponding slow time
epochs. The value of the anomaly measure at the current time

1953



S Gupta and A Ray

0 0.1 0.2 0.3
0

0.2

0.4

0.6

0.8

Expended life fraction 
(a)

(b)

(c)
(d )

P
ro

b
ab

ili
ty

0.6 0.7 0.8
0

0.05

0.1

0.15

0.2

0.25

Expended life fraction 

P
ro

b
ab

ili
ty

0.7 0.8 0.9
0

0.05

0.1

0.15

0.2

0.25

0.3

Expended life fraction 

P
ro

b
ab

ili
ty

0.65 0.7 0.75 0.8 0.85
0

0.05

0.1

0.15

0.2

0.25

Expended life fraction 

P
ro

b
ab

ili
ty

Figure 8. Plots of actual probability distribution of expended life fraction and corresponding log-normal fit at four different values of
anomaly measure: (a) ψ= 0.025, (b) ψ= 0.160, (c) ψ= 0.280, (d) ψ= 0.350.

epoch is then calculated from the evolution of this probability
vector from the nominal healthy condition. As such, the
information available at any particular instant in a real-time
experiment is the value of the anomaly measure calculated
at that particular instant. Based on this derived value of the
anomaly measure the exact determination of the expended life
fraction (τe) is not possible due to the variations observed in
the statistical family as seen in figure 7. Therefore, due to
uncertainty in determining its exact value at a particular value
of anomaly measure, τe can be treated as a random variable
[24].

The range of anomaly measure (i.e. the ordinate in
figure 7) is partitioned into h = 100 uniformly spaced levels.
A pattern matrix T of dimension � × h is then derived from
the anomaly measure profiles shown in figure 7. The elements
of T are derived such that each column of T corresponds to
the values of τe measured for � samples at the corresponding
anomaly measure. As such, the elements of each column of
T describe a distribution of the random variable τe. That is,
for each value of the anomaly measure, there is a distribution
associated with τe over a certain range.

5.2.2. Estimation of the expended life fraction with confidence
intervals. In order to estimate the value of τe by statistical
means, a two-parameter lognormal distribution [6, 28, 29] is
hypothesized for each column ofT . The lognormal probability
density function of the random variable τe is defined as:

pτe
(x) = 1√

2πσx
exp

(−(ln(x) − µ)2

2σ 2

)
U(x) (3)

where U(•) is the standard Heaviside unit step function; and µ

and σ are respectively the mean and standard deviation of the

Gaussian distributed random variable ln(τe). The lognormal
distribution is obtained for each column ofT over the mean and
the variance of τe. The goodness of fit is examined by both χ2

and Kolmogorov–Smirnov tests [30]. The number of bins was
taken to be r = 8 for the data set of each column of T . With
f = r −2−1 = 5 degrees of freedom, the χ2-test shows that,
for each of the h data sets, the hypothesis of the two-parameter
lognormal distribution passed the 20% significance level [30]
which suffices for the conventional standard of 5% significance
level. Also, for each of the h data sets, the hypothesis passed
the 20% significance level of the Kolmogorov–Smirnov test
which again suffices for the conventional standard of 5%
significance level. A good discussion of these statistical tests
is provided in [30].

Figure 8 shows the histograms of τe generated at
four different anomaly measure values and the associated
lognormal distribution. Figure 8 shows that the lognormal
distribution is a good approximation of the histograms of τe.
This is because the lognormal distribution easily models the
failure rate shapes. The lognormal distribution for failure
analysis is commonly used in the literature [29]. The rationale
for the choice of the lognormal distribution is presented below.

• The fact that the lognormal distribution is one directional
on the positive axis is consistent with the fatigue life of a
structure;

• The probability of failure is in general high for a certain
range of fatigue cycles and gradually decreases thereafter.
This behaviour is easily modelled by the lognormal
distribution, i.e., the failure rate shapes and the pdf of
lognormal distribution are physically meaningful;

• Since the variable log(τe) is Gaussian, many standard
statistical tools are available for further analysis. This
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Table 1. Statistical information on expended life fraction (τe).

Information generated from the family of forward data setsActual expended life fraction (τe)

Anomaly for three new test samples Statistical parameter estimates Confidence interval bounds
measure
(ψ) No. 1 No. 2 No. 3 µ σ µτe στe τ̂e 95% 85% 75%

0.0127 0.0315 0.0109 0.0296 −3.7305 0.6732 0.0301 0.0228 0.0152 0.0065, 0.0927 0.0093, 0.0652 0.0113, 0.0535
0.0545 0.3687 0.1839 0.2623 −1.3815 0.4630 0.2796 0.1367 0.2027 0.1028, 0.6232 0.1305, 0.4903 0.1490, 0.4289
0.0724 0.4392 0.4908 0.4151 −0.8192 0.2664 0.4567 0.1238 0.4106 0.2621, 0.7430 0.3009, 0.6470 0.3250, 0.5989
0.0962 0.6447 0.5809 0.6263 −0.5467 0.1286 0.5837 0.0754 0.5693 0.4501, 0.7449 0.4812, 0.6967 0.4994, 0.6712
0.1256 0.6800 0.6689 0.6758 −0.4287 0.0789 0.6534 0.0517 0.6473 0.5580, 0.7604 0.5814, 0.7298 0.5949, 0.7133
0.1654 0.7143 0.7008 0.7305 −0.3596 0.0703 0.6997 0.0493 0.6945 0.6081, 0.8011 0.6307, 0.7723 0.6437, 0.7567
0.2068 0.7440 0.7288 0.7688 −0.3090 0.0651 0.7357 0.0479 0.7311 0.6463, 0.8340 0.6685, 0.8063 0.6813, 0.7912
0.2415 0.7633 0.7515 0.7885 −0.2740 0.0613 0.7618 0.0467 0.7575 0.6743, 0.8574 0.6961, 0.8305 0.7086, 0.8159
0.2738 0.7797 0.7712 0.8038 −0.2482 0.0586 0.7816 0.0458 0.7776 0.6956, 0.8752 0.7171, 0.8489 0.7294, 0.8346
0.3025 0.7952 0.7876 0.8215 −0.2231 0.0548 0.8012 0.0440 0.7976 0.7185, 0.8908 0.7393, 0.8657 0.7511, 0.8521
0.3465 0.8181 0.8149 0.8518 −0.1850 0.0510 0.8322 0.0425 0.8290 0.7521, 0.9185 0.7723, 0.8944 0.7838, 0.8813
0.3875 0.8472 0.8397 0.8818 −0.1456 0.0515 0.8657 0.0446 0.8622 0.7816, 0.9563 0.8028, 0.9311 0.8148, 0.9173
0.4258 0.8811 0.8704 0.9133 −0.0988 0.0548 0.9073 0.0497 0.9032 0.8137, 1.0000 0.8372, 0.9803 0.8506, 0.9648
0.4521 0.9145 0.8932 0.9374 −0.0660 0.0500 0.9373 0.0469 0.9338 0.8487, 1.0000 0.8711, 1.0000 0.8838, 0.9915
0.4702 0.9450 0.9202 0.9624 −0.0434 0.0419 0.9584 0.0402 0.9559 0.8821, 1.0000 0.9015, 1.0000 0.9125, 1.0000

µ = mean of ln τe, σ
2 = variance of ln τe, µτe

= exp(µ + σ 2/2); σ 2
τe

= (exp(σ 2) − 1)µ2
τe

; and maximum likelihood estimate
τ̂e = exp(µ − σ 2).
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Figure 9. Plots of confidence interval bounds are shown at three
different confidence levels of 95%, 85% and 75%. Profiles of
anomaly measure are also shown for three new validation test
specimens.

makes the lognormal distribution a very natural choice
for failure analysis.

Once the lognormal distributions are obtained, the
confidence interval bounds at different confidence levels can
be computed from the properties of the distribution using
elementary statistics [30, 31]. The confidence level signifies
the probability that the estimated parameter will lie within
the corresponding confidence interval. As an example, for
a confidence level of 95%, the probability that the actual
parameter will lie between the specified confidence intervals
is 95%. Figure 9 provides the plots of confidence interval
bounds at three different confidence levels of 95%, 85% and
75%. As an illustration in figure 9, the confidence interval
bounds at 95% confidence level are shown for an arbitrary
value of anomaly measure equal to 0.225 (lower bound =

0.6610 and upper bound = 0.8464). The estimate τ̂e of the
expended life fraction τe can be obtained at the point of highest
probability, i.e. the mean of the distribution. The other useful
parameter is the remaining life fraction whose estimate τ̂r is
obtained at any instant as: τ̂r = 1 − τ̂e. The information on
the remaining life estimate in a real-time experiment is useful
for development of life extending control and resilient control
strategies for prevention of widespread structural damage and
catastrophic failures.

5.2.3. Experimental validation and discussion. The
proposed methodology is validated by fatigue experiments on
three new test specimens. The profiles of anomaly measure
are computed using the STSA method for these three test
specimens. Figure 9 also shows the profiles of the three test
samples along with the plots of confidence interval bounds
derived from the statistical ensemble. The estimates of the
mean τ̂e of the expended life fraction with the standard
deviation σ̂ are obtained at (arbitrary) different values of
the anomaly measure using the procedure described in the
previous section. The results are interpolated for values of
the anomaly measure that lie in between the two columns of
the pattern matrix T . Confidence interval bounds are obtained
at three different confidence levels of 95%, 85% and 75%.
Table 1 provides the actual and the estimated values of the
expended life fraction for the three test specimens along with
the various confidence bounds for arbitrarily chosen values of
anomaly measures.

As seen in figure 7, there are two phases of crack growth
which can be identified from the slope of the anomaly measure
profiles. The two phases can be broadly classified as the
crack initiation phase and the crack propagation phase. At
lower values of anomaly measure the profiles of all specimens
indicate a relatively smaller slope than for higher values of
anomaly measure. The change in the rate of fatigue damage
progression as observed in figure 7 occurs at the transition
from the crack initiation phase to the crack propagation phase
(approx from τe = 0.5 to τe = 0.7). Figure 9 shows
that the uncertainty in the fatigue damage is higher in the
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crack initiation phase as indicated by the width of confidence
intervals for any particular value of the anomaly measure.
Subsequently, upon onset of the crack propagation phase, the
confidence intervals are significantly more tight than those in
the crack initiation phase. This observation is explained by the
fact that the uncertainty in the crack initiation phase depends
on the random distribution of flaws in the specimen [26].
Furthermore, the uncertainty in the estimation of expended
life is amplified in the crack initiation region because of the
fact that the anomaly measure profiles have a smaller slope.
During this crack initiation phase, small cracks originate
from the microstructural damage (e.g. dislocations, voids
and inclusions) at multiple sites in the entire body of the
material structure causing a high uncertainty in fatigue damage
behaviour. These multiple small cracks eventually develop
into a single large crack leading to the onset of the crack
propagation phase. Therefore, the uncertainty in the crack
initiation phase relates to the inhomogeneity in the material
and non-uniform distribution of the initial conditions in the
specimen causing stress augmentation at certain locations
which directly affects the formation of small cracks. The
small slope of the profiles of fatigue damage growth further
enhances the uncertainty in fatigue life estimation. Once a
single large crack develops, i.e., the crack propagation stage
starts, then the dynamics of subsequent damage are relatively
simple due to high stress concentration at the crack tip.

Table 1 compiles the pertinent statistical information on
expended life fraction. Column 1 lists randomly selected
values of anomaly measure ψ as a representation of the
information generated from observed time series data. The
results are interpolated for values of the anomaly measure
that lie in between the two columns of the pattern matrix
T . Columns 2–4 show the observed values of expended
life fraction τe for three additional test specimens that are
not included in the original ensemble of � = 40 specimens.
Columns 5–12 list the statistical information, extracted from
the ensemble of original � = 40 specimens, and the details are
described below.

• Two parameters µ and σ of the lognormal distribution
(see equation (3)) of the expended life fraction τe, which
are respectively the mean and standard deviation of
ln(τe). Correspondingly, the mean and variance of τe

are respectively obtained as:

µτe
= exp(µ + σ 2/2) and σ 2

τe
= (exp(σ 2) − 1)µ2

τe
.

• Maximum likelihood estimate τ̂e = exp(µ − σ 2) of
the expended life fraction τe, i.e., where the probability
density function pτe

attains the maximum value.
• Confidence interval bounds for the expended life fraction

τe, at three different confidence levels of 95%, 85% and
75%.

As seen in table 1, the confidence intervals are relatively
wider during the crack initiation region, i.e. for low anomaly
measure values. This is due to the high uncertainty associated
with the crack initiation phase. After the onset of crack
propagation phase when a single large crack starts progressing,
the uncertainty reduces and the confidence bounds come
closer to the mean (see, for example, the rows of table 1

for anomaly measure values �0.12). As such, the information
that is derived during the crack initiation phase can act as
an early warning of the onset of widespread fatigue in the
crack propagation phase. The information from table 1 and
figure 9 (including the estimate of τe and different confidence
intervals) can be utilized for real-time monitoring of the fatigue
damage and to obtain advance warning of complete failure.
Furthermore, the information can be used in future research
for the development of probabilistic robust control strategies
for damage mitigation and prevention of catastrophic failures.
This work is still under active investigation and will be reported
in forthcoming publications.

6. Summary, conclusions and future work

This paper presents a dynamic data-driven statistical method
for detection of fatigue damage at an early stage and
online estimation of the remaining useful fatigue life in
polycrystalline alloy structures. The proposed method is built
upon the principles of symbolic dynamics, information theory
and statistical pattern recognition. Specifically, ultrasonic
signals are analysed for detection of microstructural changes
in 7075-T6 alloy specimens on a fatigue damage test apparatus.

This paper has addressed damage monitoring and
remaining useful life estimation for a single source of faults.
In human-engineered complex systems, there exist multiple
correlated sources of anomalies that may evolve to catastrophic
failures. The proposed tool is potentially applicable to
dynamical systems with multiple sources of correlated faults,
where it would be necessary to fuse the multivariate statistical
information into a univariate distribution of the states of
a finite-state automaton model [15]. Nevertheless, further
theoretical and experimental research is necessary before its
application to such problems that are prevalent in industry.

The reported work is a step towards building a reliable
instrumentation system for early detection of fatigue damage
and real-time estimation of remaining useful fatigue life in
mechanical structures of human-engineered systems. For
example, the information on current health status and
remaining useful life could be used to update the decision
and control laws online to enhance plant performance or avert
forthcoming failures. As such future research areas include life
extending control and resilient control in complex engineering
systems. While there are many research issues that need
to be addressed, the following potential future tasks are
envisioned:

• Solution of the inverse problem under more complicated
scenarios for multiple parameter estimations and under
variable amplitude and random loading conditions.

• Development of a probabilistic robust control strategy
based on the statistical information derived from the
forward problem for real-time life extension, damage
mitigation and prevention of catastrophic failures [23].
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