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Dynamic excitation- a noninvasive technique for initiating

stiction repair in MEMS
A.A. Savkart, K.D. Murphy*T, and M.R. Begley$§

tDivision of Applied Mechanics
Department of Mechanical Engineering
University of Connecticut, Storrs, CT 06269-3139

§Structural and Solid Mechanics Program
Department of Civil Engineering
University of Virginia, Charlottesville, VA 22904-4742
ABSTRACT

Commercial applications of micro-electromechanical systems (MEMS) continue to be plagued by reliability issues
encountered during fabrication and operation. One of the most prevalent problems is the adhesion between adjacent
components since adhesive forces are known to promote wear and defect-related failures. In extreme circumstances, the
adhesion is large enough to prevent separation, a phenomenon commonly referred to as stiction-failure. The objective
of current work is to determine analytically whether dynamic excitation may be used to repair stiction-failed
cantilevers. This is accomplished by relating the structural dynamic response to the de-cohesion of stiction-failed

micro-cantilever beams under various loading conditions.

1. INTRODUCTION

A typical schematic of such a failed micro-cantilever beam is shown in Figure 1a. Modal analysis is used to describe
the dynamic response of the stiction failed micro-cantilever beams. Using dynamic fracture models in cooperation with
the modal analysis, a procedure to predict the onset of de-cohesion of the adhered cantilever beam is established.
Specifically, de-cohesion is initiated when the dynamic energy release rate exceeds a critical interface fracture energy,
which is known to control adhesion. The competition between stored elastic energy and adhesive forces has naturally
led to the application of fracture mechanics models, which introduce a critical interface adhesion energy that must be
overcome to initiate debonding "), This framework is attractive because of both its simplicity and its ability to predict
failure using a single parameter characterizing the interface. This is a critical advantage since many systems (and
adhesion mechanisms) involve nanoscale forces and displacements that are difficult to measure directly. The principal
motivation for the present analysis is to explore the possibility of using probes or electrodynamic forces to induce
vibrations that promote the release of adhered structures. It is the goal of this work to identify parameter combinations
that lead to initiation of stick release. These approaches may have important advantages in scenarios where alternative
prevention or repair strategies are ineffective or prohibitively expensive. Electrodynamically induced vibrations
generated using the functionality of the chi{) itself could be combined with laser pulse heating, which uses rapid heating
to promote debonding and restore function ),
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Figure 1: a) Schematic of stiction failed single cantilever beam adhered to the substrate, shown is acted upon by a
dynamic load. b) Schematic of a beam adhered to the substrate, treated as a fracture problem, showing crack tip activity

2. ANALYTICAL MODELS

Two models are developed to predict the initiation of de-cohesion of adhered cantilevers, which are subjected to
harmonic uniform pressures loads. A linear vibration model for the response of the beam (presented first) is used as
input to the dynamic fracture model (presented second), which yields the dynamic energy release rate. These models
are used together in Section 3 to predict the onset of de-cohesion. Figure 1a shows a cantilevered micro-beam deformed
into an s-shape due to adhesion with the substrate. The rectangular beam has length L, an unstuck length of s, depth b,

and thickness 4. The gap between the free standing beam and the substrate is & . A transverse, harmonic point load
(shown) or a harmonic uniform pressure load with frequency €2 is applied to the beam.

2.1. Vibration Model

A stiction failed MEMS cantilever beam as shown in the Figure is subjected to a time varying uniformly distributed
pressure load expressed as:

P(x,t)=P(x)cos(Qt), 1)

where P (x) = P . The total deflection is a superposition of the dynamic response and the (static) equilibrium position with zero

externally applied load. The static position of the beam, W, (x), is dictated by elementary beam theory, clamped boundary

conditions and the condition that W, (S) = J . This renders the following initial deflection (with zero applied load) of the beam

x) xY
w =3 %) o] | @
s s

This is used as the reference position for the dynamic analysis, which includes the effect of the externally applied load.
Modal analysis is used to obtain a solution to the governing dynamic beam equation, given by:

mw+cw+ EIw” = P(x)cos(Q1), 3)

where m is the mass per unit length, ¢ is the damping constant, EI is the bending rigidity, w is the deflection relative
to the static position, and dots and primes refer to derivatives with respect to time and space, respectively. Note that w

Proc. of SPIE Vol. 5716 159



represents the deflection arising from the applied load, and does not include the initial deflection arising from the gap
separation. A separable solution of the following form is sought:

wx, 1) =Y ADY,(x), (4)
i=1
Where

W.(x) = —;_[/Leﬂ"" + K,.e‘ﬂ”‘]— cos(fx) + «; sin(f,x), (5)

is the /™ mode shape of a clamped-clamped beam and /li , K;and ﬂl are tabulated values ¥ Substituting this separable solution in

the Equation 3 and invoking orthogonality renders a linear, second order, constant coefficient ordinary differential equation for the i
modal amplitude. The total solution is a superposition of the transient and steady state amplitude and is given by:

e =4 0+ 4= 0,0 ©

The constants arising in the transient solution are found by assuming zero deflection and zero velocity with respect to the static
deflection, as initial conditions.

2.2. Fracture Model

In the fracture mechanics model used to predict the onset of de-cohesion between the beam and the fixed, semi-infinite
substrate, the “crack tip’ occurs at the point of separation of the two surfaces, as indicated in Figure 1b In this work, a
dynamic form of the energy release rate, G, which includes inertial effects, is derived from the energy flux integral
approach described in detail by Freund ¥ The goal is to determine the instantaneous rate of energy flow through an
arbitrary control volume containing the crack tip. The boundary of this volume is denoted as ¢ and is shown in Figure
1b. The energy flux is obtained by taking a dot product between the Newton’s second law, O ;, . —pu,,, = 0, and the
velocity field, ol ; / Ot , and integrating around the boundary. This leads to a general expression for F, the energy flow
into & towards the crack tip:

F(a)= L[O‘ijnj%l%—+(U+T)S‘nj}da, (7)

where O; is the stress field, 7, is the outer normal to the boundary ¢, § is the velocity of the crack tip, and d¢ is an

element of the boundary. U is the stress work density, given by:

U=

rJ' ou, dt, (8)

Oy ——
otdx !

—o0

and T is the kinetic energy density, given by:

_ L, 0u o
2P o o ©)
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The dynamic energy release rate is related to the flux integral, Equation (7), by the relation 1.

_F@) (10)

N

Gy

Here, G, represents the energy release rate arising from the applied dynamic load and is determined from the
deflections relative to the static equilibrium position. The contribution arising from the initial static deflection caused
by the initial gap separation, G_, is superposed in the final step of the derivation.

For the particular problem of a micro-cantilever stuck to a semi-infinite substrate, F'(&) is calculated over the
boundary shown in Figure 1b. The energy flux integral is easily evaluated within the framework of 2-D, linear elastic
Euler-Bernoulli beam theory, which describes the transverse deflection of the neutral axis (at x, =#h/2 as

u, = w(x,,t)).

Several observations simplify the evaluation of the integral. First, no energy flows through & from the substrate, since
it is static and unstressed. In the beam, there are four areas through which energy might flow, and they are as labeled in

Figure 1b. Ahead of the crack tip,(side 3 of &) where x, = 5", the curvature and velocity are both zero. Thus, there is
no contribution to the energy flux from this side. In addition, there is no contribution along sides 2 or 4, since these are
traction free surfaces and 7, =0. This leaves only the flux along side 1, located at X, =58 . Using these

simplifications, and elementary calculus the individual terms of the Equation (7) are evaluated to obtain the dynamic
energy release rate given as "

2 - <2
_Fl@)_6M (s 15, an

G
/ $ ER’? c

[
where M (s_ ,t) is the dynamic moment at the crack tip, E is the modulus of elasticity of the beam, h is thickness, § is

the crack tip velocity and C, shear speed. Since the objective is to examine the initiation of crack propagation, the term

§/c)? is zero and maybe omitted from Equation (11). Evaluation of Equation (11) requires an expression for the
o q

dynamic moment at the crack tip arising from the periodic applied load, which was developed in Section 2.1 and is
given by M(s_,t): EW(s™,0).

De-cohesion is initiated when the net energy release rate is equal to the interface toughness, i.e. G, =T, (S ) The
net energy release rate is given by the superposition of static and dynamic terms:
G =G, +G,, (12a)

where G, is the energy release rate arising only from the initial gap separation (i.e. the initial deflection), given by [3-61.

GS:ISEI(EQ.
bs

(12b)

Hence, the first term does not include the effect of the externally applied harmonic loading. The second term is
calculated using deflections referenced to the initial position.
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Figure 2: Prediction of dynamic force required to initiate de-cohesion of beam from the substrate for a distributed
loading condition for single and multimode cases.

3. RESULTS

A uniform pressure load, where P(x) = P, is considered. This is motivated by the idea that harmonic electrodynamic
pressures may be used to excite the beam. Strictly speaking, an electrodynamic pressure generated between the
deflected beam and substrate would not be uniform, as it depends on the separation between the cantilever and the
substrate. However, uniform pressure loading provides general insight into the distributed load problem. It is also
important to note at this point, that the loading scenario chosen for the analysis is completely arbitrary. Various gap
dependent loading scenarios may be considered to describe the complexities of the actual actuation force.

3.1. Distributed load
Figure 2 shows the (£, P) parameter combinations leading to debond initiation for the uniformly distributed, harmonic
excitation. It shows the single and multimode solutions for the steady state only response and total response (steady

state + transient). These curves can be split in three distinct zones i.e. first is the zero frequency zone, second is the
zone near the resonant frequency and the third zone is between the resonant frequencies.
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Figure 3: Variation of Steady state amplitude normalized with static amplitude of first three modes, with the normalized
frequency.

3.1.1. Steady state behavior

It is possible that some adhesion mechanisms may be time or cycle-dependent. In these case, numerous successive
cycles of large driving force may be necessary to initiate debonding. In these situations, the transients will have died
away and the steady state response will dominate. Hence, a steady-state only response will be considered first.
However, it should be noted that, generally, transients combine with the steady state response and, as a result the steady
state only will be smaller. The lower energy associated with the steady state only results make it a conservative
approach.

Two steady state results are shown in Figure 2— one with a single mode retained and second with 3 modes retained.
First, consider the single mode steady state solution. At low frequencies, the force required to initiate peeling is
approximately half of the required static force to cause peeling, which clearly does not capture the true nature of the
structural response. To understand this behavior one needs to look at the multimode response (retaining three modes),
which asymptotes to the static value at zero frequency. As the frequency is increased from zero, the single mode curve

decreases until Q@ / @, =1. The reduced force amplitude required for debond initiation near the first natural frequency

can be attributed to the structural response of the beam, as shown in Figure 3. This shows the variation of the steady
state displacement amplitude of the load point as a function of the normalized frequency. The results in the figure are
normalized relative to the static displacement amplitude and the first natural frequency. For illustrative purposes, two

different damping cases are shown: { =0.01 and {'=0.05. This behavior explains the results shown in Figure 2; as
the displacement amplitude increases near resonance (€= @),), the energy supplied to the crack tip for debonding

increases. Hence, in the single mode model, the forcing amplitude required to initiate debonding decreases as the first
resonant frequency is approached. As the frequency is increased beyond /@, =1, the required force increases
without bound.

Next, consider the multi-mode case retaining 3 modes. As Q/ @, — 0, the dynamic force required approaches the
static peeling force. If the forcing frequency is increased, the force amplitude drops at the 1** resonant frequency and

then rises again. One might expect similar dips at (@=®,) and (@=@,). Curiously, there is no drop in the

multimode solution at the second frequency. For the purely symmetric applied load, the anti-symmetric second mode
cannot contribute. As a result, the second mode (or any asymmetric mode, for that matter) cannot be excited by this

loading function. Because there is no dip near (@ = @, ), the required load (in this region) exceeds the static peeling
force P, , given by the horizontal line at P /P, =1. This line serves as a benchmark, indicating whether vibrations are

an improvement over a simple static peeling load. The range of frequencies for which P/ P >1 is referred to as a
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‘detrimental regime’ because, in these regimes, vibrations actually are a detriment (relative to the static case) to the
stick release process.

3.1.2. Transient behavior

Now consider including the transient behavior (see Equation 6) for both the single and multi-mode (total) responses.
The single mode total solution shows the same general trends as the steady-state only single mode solution but the force
required for debonding is smaller at any excitation frequency. This is because G, exceeds I, in the transient regime
of the motion. Clearly the steady-state only solution is conservative, as it tends to over-predict the minimum load
required for debonding. The multi mode result corresponds to the lowest curve in Figure 2. Again, this curve shows
similar trends to the steady-state only curve. Near the resonances, less force is required. However, the total multi-mode
result is much lower than the steady-state (only) multi-mode result. Both curves experience a drop in the required force
as the first resonance is approached. However, there is no drop in the require force at the second resonant frequency —
only at the first and third frequencies. The total solution results do not approach the static value at low frequencies,
since transients continue to play a significant role. Near the first resonance, the required force drops. Like the steady-
state only results, the total solution also does not dip near the second resonant frequency. In fact, the required force is
larger than the static force (for frequencies indicated by the gray regions). The reason for this is similar to the
discussion made for the steady state behavior which is attribute to the asymmetric loading.

4. CONCLUSION

Using this model, critical combinations of the excitation frequency and force level (QP ), which initiate debonding,
have been identified. It is clearly demonstrated that when the excitation frequency is near any natural frequencies of the
adhered beam, the required force is reduced significantly. This indicates lower power requirements to achieve stiction
release near resonant frequencies making it an attractive non-invasive technique for stick repair in MEMS devices.
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