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Using Periodic Electrical Excitation to Achieve Stick-Release
in Micro-Cantilevers

Amit Savkar and Kevin D. Murphy

Department of Mechanical Engineering
University of Connecticut, Storrs, CT 06269-3139, USA

1. ABSTRACT

Recently, it has been proposed that sticking contact between micro-scale components may be relieved (i.e., the
components may be unstuck) using structural vibrations. The means to excite these vibrations plays a critical
role in the physical mechanism responsible for the initiation of stick-release. For example, it has been shown
that mechanical actuation using, say, an instrumented nanoindentor is most effective near a resonant frequency.
Aside from showing the fundamental mechanism responsible for the repair (resonance), it also provides insight
for choosing optimal excitation parameters, such as excitation amplitude and frequency, for stick-release. In
the present paper, periodic electrical excitation is explored as a means of inducing structural vibrations. It
is shown that electrical excitation produces stick-release through a fundamentally different mechanism than
its mechanical counterpart. Here, stick-release is achieved via unstable self-excited vibrations. This fact has a
significant influence on the practical matter of choosing appropriate excitation parameters to produce the desired
repair. Using the underlying physics, appropriate parameter combinations are mapped.

2. INTRODUCTION

One critical issue preventing the wide-scale introduction of MEMS into engineered systems is the ongoing problem
of long-term reliability. And one common problem is sticking contact, often referred to as stiction failure. This
contact may be between neighboring components or between a component and the substrate. For example,
Figure 1 shows a schematic of a micro-cantilever (e.g., a comb drive) stuck to the substrate in static equilibrium.
Once stiction has been initiated, the stuck beam is no longer free to move as it was intended and the device is
said to have failed. There are a variety of forces that may contribute to sticking contact. These include van
der Waals forces, micro-capillaries, and electrostatic forces, to name just a few. But regardless of its source,
the adhesion energy at the interface is sufficient to prevent the elastic strain energy, created by the deformation
in the beam, from restoring the beam to its horizontal, unstuck equilibrium. One approach for improving
reliability is to introduce surface treatments that limit the interfacial energy and, therefore, reduce the likelihood
of sticking contact. These include hydrogen terminating treatments, self-assembly monolayers, fluorocarbon
films, and diamond-like carbon coatings.!»? These treatments have successfully reduced the frequency of stiction
failures under certain circumstances. Of course, these treatments require additional processing steps, increasing
manufacturing time and driving up costs. Moreover, due to geometric constraints, additional material layers
may not be an option in some designs.

A second approach to improving reliability is to repair (i.e., unstick) stuck components, such that they may
be returned to service. By far the most studied approach involves using short laser pulses, directed at the stuck
component.3® The specifics of the release mechanism are not thoroughly understood at the present time, though
it has been suggested that either (i) the thermal expansion of the component relative to the substrate leads to
relative slip or (ii) thermal buckling drives the component to separate from the substrate.® Regardless of the
mechanism driving the repair, this strategy has met with considerable success. However, practical implementation
of this technique is probably going to be limited to failures that occur during fabrication. Directly after fabrication
and before the device is incorporated into a system, the chip may be inspected, mounted in a laser-release
apparatus containing all of the necessary optics, and repaired. For components that fail during operation, this
is not a realistic option - particularly if the failure is persistent, i.e. if it is re-occurant.
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1 P cos(S2t) - electrical force

electrical actuation pad

crack tip
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Figure 1: A schematic of a micro-cantilever stuck to a substrate. Its unstuck length is s. A periodic voltage is
applied over a small portion of the beam, in an attempt to unstick it.

Recently is has been suggested that structural vibrations might be an effective alternative to laser-pulsed
heating for the repair of stiction failed components.” The physical process behind this approach can be seen
in terms of Figure 1. At the right end of the unstuck section, z = s, the beam and the substrate merge and
form a singularity, which is geometrically similar to a crack tip. As the unstuck portion of the beam is driven
periodically, the crack may or may not advance; the onset of crack propagation (also referred to as peeling, in this
physical context) and its continued growth may be described via dynamic fracture mechanics. The preliminary
work done focused on determining the excitation parameter combinations of the forcing amplitude and frequency
(F,Q) that initiated peeling.” There were several key results. At the zero frequency limit, the dynamic force
required to initiate peeling asymptotically approached the static peeling force Fy. Near the resonant frequencies,
the force required to initiate peeling dropped because of the amplification of the response amplitude. Exceptions
to this general rule exist but are rare; these exceptions depend sensitively on the loading geometry and the
vibration mode shapes. Lastly, in between resonances, the force required increases dramatically, indicating that
a dynamic release process at these parameter combinations is less desirable than near a resonance.

In the present paper, electrical actuation is considered as an alternative to the mechanical loading.” Again,
consider the schematic of the micro-cantilever shown in Figure 1. If a periodic voltage is applied through an
electrical actuation pad on the substrate, a periodic force is exerted on the beam. Specifically, this force is
gap-dependent: f o< m, where w(z,t) is the lateral deflection of the beam. This gap dependent excitation
changes the physical mechanism responsible for stick-release. Here, a dynamic instability may initiate the peeling
process - as opposed to resonance in the mechanical loading scenario, where the load is gap-independent. This
fact may be used to our advantage: a simple stability analysis will clearly identify unstable regions in the voltage
- frequency (V,Q) plane. By driving the system in these regions, the vibration amplitude will grow (without
bound, in the linear sense) and promote peeling. This provides a rational for choosing excitation parameters for
effective stiction repair.

It should be noted that there are several potential benefits to this electrical vibration repair approach. To
begin, the only obvious mechanism for component damage, as a result of the repair process itself, is fatigue.
But since most materials have fatigue lives exceeding 10* cycles, this won’t be an issue even after numerous
failure/repair cycles. This stands in marked contrast to thermal repair, where components may warp if too
much energy is delivered in any single pulse. Second, electrical excitation is particularly attractive, since it
could use the functionality of the chip itself to effect the necessary repair. Moreover, this would permit the
repair of components that fail in-operation (i.e., in-service failures) without having to remove the chip from an
overall system. Lastly, one may ask about the down side. At first glance, it may appear that vibration repair
requires a-priori knowledge of the unstable zones in the (V, ) plane. While such calculations are possible for the
micro-cantilevers studied here, they are not trivial for the complex component geometries and boundary/contact
conditions encountered in real MEMS devices. However, these unstable regions are reasonably large, such that
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the excitation frequency may be swept until an instability is encountered and the necessary repair is achieved.

3. THE MATHEMATICAL MODEL

The system under consideration is a stuck micro-cantilever, as shown schematically in Figure 1. These struc-
tures were chosen because of their simple geometries, well defined contact areas, and the availability of MEMS
cantilevers to be used in future (anticipated) tests.

3.1. The Vibration-Electrical Model

The structural model consists of a uniform, linear elastic beam with net length L, an initial unstuck length
s (L = s+ §), a rectangular cross section with thickness h and depth b (cross-sectional area A = bh), and
mass per unit length m. The structural damping is uniform throughout and viscous, with a damping coefficient
¢. Squeeze-film effects may be relevant, but would be localized near the crack tip. As a rule of thumb, this
model is valid for low pressure scenarios and for deformations that do not exceed the beam thickness. The
latter is guaranteed if the gap separation is less than the thickness, § < h. The equation governing the lateral
displacement of the beam is simply:

mW + W + EIW,gpee = F(z,t), (1)

where W is the lateral deflection, I = bh3/12 is the moment of inertia and dots refer to derivatives with respect
to time and e,; = O @ /Oz refers to differentiation with respect to space. F(z,t) is the external excitation.

The excitation is provided by a small actuation pad located on the substrate, as shown in Figure 1. The
electrical force is applied over a region of the beam between 1 < x < 2 and is gap dependent. This means that
the force delivered is deflection dependent. Specifically, the force is given by:

¢ 2
oA V=(t) Q[H(x_xl)—H($—$2)], @

F@l) = S o wer

where ¢, is the permittivity in air, V(t) = V, cos(2t) is the periodic voltage, and H(z — z;) is the Heavyside step
function, which steps from zero to one at x = x;.

To simplify matters, Equations (1) and (2) may expressed in nondimensional form. The position along the
beam is normalized by the total unstuck length, £ = z/s. This is an appropriate choice because the focus is
on the initiation of crack advance, for which s is constant. The lateral deflection is normalized by the gap size
w = W/§ . Introducing these quantities into Equations (1) and (2) leads to

ﬁ V2 cos?(Qt)

mow + cow + Elw,eeee = 2 o w]2

[H(§~6)—H(E—8&)]. (3)

Provided the actuation pad is located sufficiently close to the post support, the deformation of the loaded portion
of the beam is small, i.e. w << 1. In this case, the binomial expansion may be used to expand the gap-dependent

forcing term:
1

=P
A nondimensional time, 7 = 2Q¢, and the binomial expansion may be introduced into Equation (3). Using a

one mode Galerkin expansion (w(z,t) = a(t)¥(z)) all spatial dependence is eleminated, leaving an ODE with
periodic coefficients:

~ 1+ 2w + O(w?). (4)

Ar) + pd(r) + o+ e + ccon(r)] Ar) = <27 ©
Here p = (/r,a= 1/4r% ¢ = —naVD2, and Kk = eoﬁ/63k. Also, r = Q/w is the normalized excitation frequency.

Equation (5) is a version of Mathieu’s equation and the parameters p, a, and € are the Mathieu parameters. This
equation is a linear, nonhomogeneous ordinary differential equation with periodic coefficients for the unknown
modal amplitudes A(7). It is worth noting that any mode shape ¥; could be used in the discretization process.
For the remainder of this work, the first vibration mode is retained.
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It is also worth considering the influence of the initial geometry on the vibration behavior. The stuck beam
of Figure 1 is initially deformed and vibrations occur about that deformed state. However, because all of
the deformations are linear, superposition applies; the initial deformation and the vibration behavior may be
examined separately and then superposed at the end. Of course, since the objective is to promote unstable
oscillations (where A(T) — oo in this linear model), the initial deformation will be of little consequence. Hence,
the focus will remain on the vibration response of a clamped-clamped beam.

3.2. Solution Procedure

The total solution to Equation (5) is the sum of the transient solution, a,, and steady-state solution, a.,
corresponding to the homogeneous and nonhomogeneous forms of the equation of motion, respectively. Moreover,
it is well established that these Mathieu equations may possess unbounded (unstable) homogeneous solutions.®
In this case, the total solution a..;.; = a, + a. is also unbounded, regardless of the behavior of a,,. The goal
is to capitolize on this unbounded response, as it should promote repair. Consequently, the objective is to
identify parameter combinations that lead to periodic transient solutions, since these solutions serve as a natural
demarcation between bounded (decaying) transient solutions and unbounded (growing) transient solutions.

The homogeneous Mathieu equation is given by,

A(T) 4+ pA(r) + [a + € + ecos(t)] A(7) = 0. (6)

The goal is to find periodic solutions to the Equation (6) using Lindstedt’s perturbation method.'' In this
method, € is assumed to be small and a solution to Equation (6) is sought in the form of the following expansion:

A(T) = Ao(T) + €Ay (7) + EAa(T) + . .. (7)

and
a=a,+ca; + eaz + ... (8)

where ao, a1, ag... are constants. Since the periodic coefficients cos(t) in Equation (6) varies with a period of
27, only two types of solutions exist - one with period 2z and the other with period 418 Hence, solutions
involve functions A,(7), A1(7), etc., which are either 27 or 47 periodic.

Substituting Equations (7) and (8) into Equation (6), allows one to collect terms in like powers of e. Since
¢ # 0, the coefficients to these terms must be zero. The first three of these coefficients (set to zero) are:

A(T) 4 aodo(t) = 0 (9a)
Al(T) +a,A (1) = —,&Ao(r) — a1 A,(7) ~ A1) — A, cos(T) (9b)
Ag(7) + agAa(7) = — 1AL (T) — a24,(7) — a1 4, (1) ~ A1(7) ~ A; cos() (9¢)

The first order solution to these equations are

Afr) = { cos(v/aot ) B { cos (3t)

- . n=0,1,2... (10)
sin(v/aot )

and a, = "T2,n=O,1,2....

We now consider the specific values of n and solve the equations using the procedure given in reference.!! At
this point is also important to remember that one has to use the following approximation for fi = ep for n = 1
and i = €%y for n = 2 and so on for higher values of n. For this paper the highest order of ¢ that has been
choose is n = 2. It is note worthy that solving the Equations (9a),(9b),(9¢c) gives the solutions for a in terms of
the constants a,,a; and ay, and the modal amplitude A(7) in terms of 4,{7) and A;(7). These solutions are
obtained by zeroing the coefficients of all terms on the right hand side of the Equation (9b),(9¢), which render
the solutions (A;(r), A2(7)) non periodic (secular).
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Figure 2: A parametric Mathieu stability diagram. This shows combinations of (a,e) that lead to periodic
behavior - separating stable and unstable regions. Two cases are shown: ¢ = 0.0 and 0.25

4. RESULTS

The objective is to plot parameter combinations that lead to periodic solutions (using the periodic solutions
generated in section 3.2). These solutions neither grow nor decay and, hence, serve as a dividing line between
asymptotically stable behavior and unstable behavior. To begin, the nondimensional parameters (¢,a) are
considered, see Equation (6). These stability boundaries are then converted into physical meaningful parameters,
namely the voltage squared and normalized excitation frequency.

4.1. Stability Behavior in Normalized Parameters: The (¢,a) Plane

The solution procedure described in section 3.2 rendered expressions for a = a(e) for the cases n = 0,1,2...
(see Equation (8)). These functions describe combinations of (a, €) that lead to periodic solutions, indicating a
stability boundary. These functions are explicity given by:

a=—e—§ (11)
1 1 e
azz—(lzlzz—6 62—;[“’)6—%, (12)
1 1
a=1-—€e+ (Ei@ \/64—16/1,2) é, (13)

for the cases n = 0,1, 2, respectively. These equations are plotted in Figure 2 for the cases ¢ = 0,0.25. The
leftmost curve corresponds to n = 0 and is independent of damping. The next two curves (from the left) that
cross the ¢ = 0 axis are related to the undamped n = 1 case. The damped n = 1 case is moved up off the axis
and is rounded near the vertex. The unstable region is shaded and clearly indicates parameter combinations
that lead to unbounded solutions. Additional cases are shown and progress to the right, as n increases. These
curves are reminicent of those corresponding to the standard form of Mathieu’s equation.® 1

Points inside the shaded region denote unstable oscillations, which translates to large deformations and a high
probability for the initiation of peeling (desticking the beam from the substrate). Obviously, as the structural
damping is reduced, the unstable regions grow and (linearly) unbounded solutions are more likely. Of course,
these parameter diagrams don’t hold much insight into the physical parameters that will initiate debonding.
Those are described in the following section.
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Figure 3: A stability plot in physical parameters: voltage squared vs. normalized frequency (¢ = 0.0)

4.2. Stability Behavior in Physical Parameters: Voltage-Frequency Plane with ( =0

While Figure (2) does contain all of the stability information for this system, the nature of the nomalization
(which simplified the solution process) does not provide obvious insight into the physical parameters that lead
to unstable oscillations. Hence, the stability curves given by Equations (11), (12), (13) may be re-expressed
in terms of the excitation voltage and frequency using: a = 1/4r%, ¢ = —kaV?, and k = ¢,A4/8%. For the
undamped case presented in this section, closed form relations may be obtained for the square of the voltage as
a function of the frequency ratio: V2 = V2(r). The specific expressions are available in the thesis associated

with this work.?

Figure (3) shows curves associated with periodic oscillations of this system with zero damping for the various
cases n = 0,1,2. Again, the unstable zones, which promote stiction repair, are shaded. Interestingly, at low
frequencies, the stable zones only exist for very low voltages. In fact, the unstable zones are quite large below
r = 0.5; this is good news from a repair perspective. Above r = 0.5, larger stable zones emerge. At still higher
frequencies (r > 1.25), the stable region exists at lower voltages and at extremely large voltages (V.2 > 10000).
At intermediate voltages, this technique appears viable.

4.3. Stability Behavior in Physical Parameters: Voltage-Frequency Plane with ¢ # 0

Of course, real structures are damped. Moreover, there is considerable evidence in the literature that various
forms of damping may contribute to the response of MEMS devices.!? 14 These include structural damping,
squeeze-film damping, thermoplastic damping, etc. For simplicity, only structural (linear viscous) damping is
considered. Several damping values are chosen based on the literature'?-4: ¢ = 0.0, 0.25, 0.50, 0.75. In contrast
to the undamped case, closed form relations for V,2 = V2(r) are not available in the undamped case. Instead, a
line search approach had to be used. To begin, the expression € = —ra(V,)? is substituted into Equations (11),
(12), and (13); this gives a = a(V;2). The voltage is fixed at a value and the frequency (r) is incrementally
swept from a low value to a high value. Knowing that a = 1/4r2, this value of a is compared to a = a(V}?).
When these two values are equal, the resulting parameters (V,,r) correspond to a periodic solution - denoting a
stability boundary.

Figure 4 shows a stability plot of the voltage squared versus the normalized frequency for the four damping
values given. The highlighted region shows the unstable zone for the most heavily damped case, ¢ = 0.75. As one
might expect, as the damping increases, the stable zones are increased. This makes the repair procedure more
challenging. However, it is worth noting that at higher frequencies, the unstable zone is uneffected by damping
and, hence, may provide the best means for achieving a successful stiction repair.
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Figure 4: A stability plot in physical parameters: voltage squared vs. normalized frequency (¢ = 0.0, 0.25, 0.50,
0.75)

5. CONCLUSIONS

This paper presents a new approach to stiction repair in MEMS devices. Specifically, it uses electrical actuation
to promote (linearly) unstable oscillations in a stuck component. The idea is that these oscillations may grow
sufficiently large so as to induce peeling of the component from a substrate, as shown in Figure (1). Using a
perturbation stability analysis on the governing equation of motion, parameter combinations that lead to periodic
oscillations are obtained. These parameters serve as stability boundaries in the parameter space. Moreover, the
unstable zones have been clearly identified.

Because damping dramatically shrinks these unstable zones, the practical use of this approach becomes an
issue. To make use of this method, it might be advantageous to sweep gradually through a variety of frequencies
(for a given voltage); this significantly increases the likelihood that the system will fall into an unstable zone,
such that the desired repair may be effected.

Finally, it should be pointed out that this repair technique has a hidden virtue. It may be combined with
the resonance technique outlined for mechanical excitation.” Specifically, if the frequency sweep approach is
taken, one may sweep in and out of unstable zones. However, in the stable zones the system may encounter a
resonance, which could promote debonding. Repeated sweeps through unstable zones, coupled with resonances,
would further increase the likelihood of success. Ultimately, experiments must be conducted to demonstrate the
viability of this approach. Such experiments are already being developed by the authors.
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