Assignment feedback

- Always check your output files!
- PRINT is your friend
- Hash keys and array positions can (and often should) be called directly
 - People seem to want to always loop through – this is unnecessary and seems to be leading people astray
- Protein vs. nucleotide paralogs – why?

This week

1. Count RBH protein orthologs between our complete E.coli genomes
2. Use PSI-BLAST to find divergent homologs of molecular parasites

Recall: RBH orthologs

- Best matches in both directions - ortholog
- Best matches in both directions - ortholog
- Best matches in only 1 direction - not ortholog
- Different matches in each direction - not ortholog
- Different matches in each direction - not ortholog

Discuss: how will this code work?

1. BLAST proteins from each genome vs. themselves
 - What alignment and similarity thresholds to use?
2. Store first set of BLAST hits in a hash
 - Key: query ID Value: best match ID
3. Parse reciprocal BLAST
 - Store in a second hash or evaluate as you go
4. Use first hash to identify RBH hits
 - RBH if $first_hash[2nd_BLAST_best_hit] eq 2nd_BLAST_query_id
5. Tabulate shared and unique proteins
 - Partially do as you go

Submit for part 1:

- Number of shared orthologs, unique sequences in each genome
- Perl scripts
- Short (1-2 sentences) justification of BLAST similarity thresholds
Part 2: Find homologs of molecular parasites

- Make BLAST database of proteins and chromosomes for one or more complete genomes of your choice
 - Can be our model E.coli
- Download the protein sequence for a molecular parasite of your choice

Part 2: BLASTp

- Query reference genomes using BLASTp

  ```bash
  blastp -db all.fasta -query integrase1.fasta -evalue 1e-5 -num_threads 2 -out blastp.out -outfmt 6 -comp_based_stats 1
  ```

 - **-comp_based_stats**: correction for compositional biases in query; only 0 (off) or 1 can be used with psiblast (default is 2)
 - **-num_threads**: multithreading parameter for computational efficiency

Part 2: PSI-BLAST

- Make pssm of query vs NCBI nr database

  ```bash
  psiblast -db nr -query integrase1.fasta -num_iterations 5 -num_threads 2 -inclusion_ethresh 1e-5 -out blast.out -out_pssm integrase1.pssm -comp_based_stats 1
  ```

 - **Search reference genome proteins using that pssm**

    ```bash
    psiblast -db all.fasta -in_pssm integrase1.pssm -num_iterations 1 -num_threads 2 -inclusion_ethresh 1e-5 -outfmt 6 -out psiblastp.out -evalue 1e-5 -comp_based_stats 1
    ```

Part 2: tBLASTn

- Search reference genome itself using tBLASTn combined with the pssm

  ```bash
  tblastn -in_pssm integrase1.pssm -db all.fasta -evalue 1e-5 -num_threads 2 -out psitblastn.out -outfmt 6 -comp_based_stats 1
  ```

Discuss: what are we trying to demonstrate?

Submit for part 2:

- Number of homologs found using each approach
- Short (1-2 sentences) interpretation of these results
- Terminal commands used during each step
 - You should be recording these anyway, just like any experiment you document in a lab book
- Scripts, if you use any