MCB5472 Computer methods in molecular evolution

Lecture 4/7/2014

Old Assignment

Write a script that takes all phylip formated aligned multiple sequence files present in a directory, and performes a bootstrap analyses using maximum parsimony.

Files you might want to use are <u>A.fa</u>, <u>B.fa</u>, <u>alpha.fa</u>, <u>beta.fa</u> from last week's assignment, and <u>atp all.phy</u>. BUT you first have to **align** them and convert them to **phylip format*** AND you should replace gaps with "?"

(In the end you would be able to answer the question "does the resolution increase if a more related subgroup is analyzed independent from an outgroup?)

clustalw2 is one program frequently used to convert formats
 system("clustalw -infile=\$file.fa -convert -output=PHYLIP");

Phylip written and distributed by Joe Felsenstein and collaborators (some of the following is copied from the PHYLIP homepage)

PHYLIP (the PHYLogeny Inference Package) is a package of programs for inferring phylogenies (evolutionary trees).

PHYLIP is the most widely-distributed phylogeny package, and competes with PAUP* to be the one responsible for the largest number of published trees. PHYLIP has been in distribution since 1980, and has over 15,000 registered users.

Output is written onto special files with names like "outfile" and "outtree". Trees written onto "outtree" are in the <u>Newick</u> format, an informal standard agreed to in 1986 by authors of a number of major phylogeny packages.

Input is either provided via a file called "infile" or in response to a prompt.

What's in PHYLIP

Programs in PHYLIP allow to do parsimony, distance matrix, and likelihood methods, including bootstrapping and consensus trees. Data types that can be handled include molecular sequences, gene frequencies, restriction sites and fragments, distance matrices, and discrete characters.

Phylip works well with protein and nucleotide sequences Many other programs mimic the style of PHYLIP programs. (e.g. TREEPUZZLE, phyml, protml)

Many other packages use PHYIP programs in their inner workings (e.g., SEAVIEW)

PHYLIP runs under all operating systems

Web interfaces are available

Programs in PHYLIP are Modular

For example:

SEQBOOT take one set of aligned sequences and writes out a file containing bootstrap samples.

PROTDIST takes a aligned sequences (one or many sets) and calculates distance matices (one or many)

FITCH (or NEIGHBOR) calculate best fitting or neighbor joining trees from one or many distance matrices

CONSENSE takes many trees and returns a consensus tree

 \ldots modules are available to draw trees as well, but often people use figtree or \underline{njplot}

The Phylip Manual is an excellent source of information.

Brief one line descriptions of the programs are here

The easiest way to run PHYLIP programs is via a command line menu (similar to clustalw). The program is invoked through clicking on an icon, or by typing the program name at the command line.

- > seqboot
- > protpars
- > fitch

If there is no file called infile the program responds with:

[gogarten@carrot gogarten]\$ seqboot seqboot: can't find input file "infile" Please enter a new file name>

Example 1 Protpars example: seqboot, protpars, consense on atp_all.phy NOTE the bootstrap majority consensus tree does not necessarily have the same topology as the "best tree" from the original data! threshold parsimony, gap symbols - versus ? (in vi you could use : %s/-/?/g to replace all - ?) outfile outfree compare to distance matrix analysis

create *.phy files
the easiest (probably) is to run clustalw with the phylip option: For example (<u>here</u>):
#1/usr/bin/perl -w
print "# This program aligns all multiple sequence files with names *.fa 'n
found in its directory using clustalw, and saves them in phyip format.\n";
while(defined(\$file=glob("*.fa"))) {
@parts=split(/\/,Sfile);
Sfile=Sparts[0];
system("clustalw -infile="\$file.fa -align -output="PHYLIP");
#if you only want to convert files use
#system("clustalw -infile=\$file.fa -convert -output=PHYLIP");
3;
cleanup:
system ("rm *.dnd");
exit;

Bayes' Theorem Likelihood describes how well the model predicts the data P(data\model. I) P(model|data, I) = P(model, I) P(data,I) osterior Prior Normalizing Probability Probability constant sents the degree describes the degree to which we believe the model accurately rend Thomas E (1702-1761) o which we belie iven model acc describes reality based on all of our prior nd all of our prior information

-Given a multiple fasts sequence file*, write a script that for each sequence extract the gi number and the species name, and then rewrites the file so that the annotation line starts with the gi number, followed by the species/strain name, followed by a space. (The gi number and the species name should not be separated by or contain any spaces – replace them by _____ This is useful, because many programs will recognize the number and name as handle for the sequence (e.g., outsalw2 and phymi).

New Assignment

Assume that the annotation line follows the NCBI convention and begins with the

> followed by the gi number, and ends with the species and strain designation given in [] Example:

>>calpace >gi[229240723|ref|ZP_04365119.1| primary replicative DNA helicase; intein [Cellulomonas flavigena DSM 20109]

*An example multiple sequence file in the unofficial NCBI formatted annotation line is <u>here</u>.

Alternative App Posterio	proaches to Estimate r Probabilities
Bayesian Posterior Proba (Huelsenbeck and Ronquist, 2001)	bility Mapping with MrBayes
$\frac{\text{Problem:}}{\text{Strimmer's formula}} p_i = \frac{L_i}{L_1 + L_2}$	
Solution:	
Exploration of the tree space by sar (Implemented in MrBayes progra	npling trees using a biased random walk am)
Trees with higher likelihoods will be	sampled more often
$p_{i} = \frac{N_{i}}{N_{total}} \qquad \text{,where } N_{i} - \frac{N_{i}}{N_{waa} - total}$	number of sampled trees of topology <i>i</i> , <i>i</i> =1,2,3 number of sampled trees (has to be large)

Bipartition Paradox: • The more sequences are added, the lower

- the support for bipartitions that include all sequences. The more data one uses, the lower the bootstrap support values become.
- This paradox disappears when only embedded splits for 4 sequences are considered.

The vast majority of observed sequence differences between members of a population are neutral (or close to neutral). These differences can be fixed in the population through random genetic drift. Some mutations are strongly counter selected (this is why there are patterns of conserved residues). Only very seldom is a mutation under positive selection.

The neutral theory does not say that all evolution is neutral and everything is only due to to genetic drift.

Even synonymous mutations do not lead to random composition but to codon bias. Small negative selection might be sufficient to produce the observed codon usage bias.

Nearly Neutral theory:

Ohno postulated that gene duplication plays a major role in evolution

Whole genome duplications (WGD)

Polyploid: nucleus contains three or more copies of each chromosome

Diploids AA and A'A' _Polyploid AAA'A'

Allopolyploid: formed from more than one

Slide from Chris Pires

What is it good for? Gene duplication events can provide an outgroup that allows rooting a molecular phylogeny. Most famously this principle was applied in case of the tree of life – the only outgroup available in this case are ancient paralogs (see http://gogarten.uconn.edu/cvs/Publ_Pres.htm for more info). However, the same principle also is applicable to any group of organisms, where a duplication preceded the radiation (<u>example</u>). Lineage specific duplications also provide insights into which traits were important during evolution of a lineage.

- A new allele (mutant) confers some <u>decrease</u> in the fitness of the organism
- · Selection acts to remove this allele

Modified from from www.tcd.ie/Genetics/staff/Aoife/GE3026/GE3026_1+2.ppt

· Also called purifying selection

Neutral mutations

- · Neither advantageous nor disadvantageous
- Invisible to selection (no selection)
- · Frequency subject to 'drift' in the population
- **Random drift** random changes in small populations

- Non-Synonymous (Changes Amino Acid)
- Rate sometimes indicated by Ka
- Rate sometimes indicated by d_n

(this and the following 4 slides are from mentor.lscf.ucsb.edu/course/ spring/eemb102/lecture/Lecture7.ppt)

Genetic Code – Note degeneracy										
of 1 st v	vs 2 nd vs 3	3 rd positio	n sites							
UUU phenyl UUC alanine	UCU UCC	UAU UAC tyrosine	UGU UGC cysteine							
UUA UUG leucine	UCA UCG	UAA UAG stop	UGA stop UGG tryptophan							
CUU CUC CUA CUG	CCU CCC CCA CCG	CAU CAC histidine CAA CAG glutamine	CGU CGC CGA CGG							
AUU AUC AUA AUG methionine	ACU ACC ACA ACG	AAU AAC AAA AAG 1ysine	AGU AGC AGA AGG arginine							
GUU GUC GUA GUG Valine	GCU GCC GCA GCG	GAU aspartic GAC acid GAA glutamic GAG acid	GGU GGC GGA GGG							

dambe

Three programs worked well for me to align nucleotide sequences based on the amino acid alignment,

One is <u>DAMBE</u> (works well for windows). This is a handy program for a lot of things, including reading a lot of different formats, calculating phylogenies, it even runs codeml (from PAML) for you.

The procedure is not straight forward, but is well described on the help pages. After installing DAMBE go to HELP -> general HELP -> sequences -> align nucleotide sequences based on ...->

If you follow the instructions to the letter, it works fine.

DAMBE also calculates Ka and Ks distances from codon based aligned sequences.

Alternatives are

tranalign from the EMBOSS package, and

Seaview (see below)

🖥 Data Analysis in Mole	cular Biology and Evolution				
File E DAMBE Help	Con Analysis Constine Photosophics Control Works Highs I a				
File Edit Bookman	Options Help				
HelpTopics Book E	n <u>v</u> v				
🕼 Contents 🔍 Judex 🖊 Se	this Align met, seq. applest aligned as, seq.				
If you e-Q Main Menu will b e- File	Introduction of the properties of the second second second processing to consider dependence is the introduction of the second secon				
the elc and dc wish t DAlign sequences	Doe way to word the labere algoreset profilem to to align the proteix coding nucleotide sequences against annico acid sequences. This obviously requires annice acid sequences which can be obtained in thor ways. First, if polarity is acid sequences of good gaship, then you can translate the sequences who amine acids. General, you are working on nucleotide sequences deposited in GooBaint, then typically you will find the composition president amine acid sequences. DAMES are made that the nucleotide sequences and the composition game acid sequence.				
If you Sequences	How Hore I illustrate the use of this special feature by assuming that you already how a file centaining unaligned provinceding machines are supported. By machine the fact,				
also a Get Rid of	Open the unaligned das life. When asked whether to align the sequences, click Na. The unaligned sequences will there be nod-into (UAMEE) buffer. Now click Sequences/Work on Amine Acid Sequences to transition the entries-under surfactive common with a present and sequences. If the based are subsidiary and its a number of hermitative				
Citatie Delete dup	codess embedded in the sequences (represented by ""), then when your nucleatide sequences are of poor quality as they might be from pseudopenes. In white case you should give up aligning your nucleatide sequences against threes justy aniso acid sequences.				
e BWork on A Xia, 2 BWork on C	The translation looks good, then click Sequence/Wigs sequences with Chartal to align the translated arrive ac sequences. Once this is done, you have a set of aligned arrive acid sequences in the DAMDE buffer for you to alig your respectively expected on sequences against.				
P D Work on co	Cick: Sequence(Align nor, seq. epsient aligned as seq. A standard file OpenSiner disity for will appear. Drave the unaligned Au to again, which contains the unaligned readends sequences. DAMEE will adjust nucleating expenses applies the adjust ation and sequences in the lattice. This procedure ensures that no				
- B Work on co B Restore se	Surrechtling ideo der Enträgged als an alignerer artefalt. If your sequences were retered fram GenZlack, then maai protein-coding genes will already have translated amino acid sequences anclude in the TRATIERE table of GenZlack files. You can use DNARE to first need in all arrival				
e: No Er	acid sequences, align these amire acid sequences, and then and DAMEE to splice surt the corresponding CDS, an align the CDS sequences against aligned amire acid sequences in DAMEE buffer.				
Sen, Analysis					

1.03	d nucleotide		ne in eag		auonco eta	rte with
nuc	leotide corr	esponding to 1st	codon no	sition)	quence stai	to with
				,		
File Edit .	Mign Props Silles Sp	ecies Footers Trees Search	Gotz	HMp		
<pre>wal=0 wal=0 dpol8 e, dpol8 c, dpol8</pre>	Arrentwrif Arrenti Arrenti Standiger (Marken Standiger) Standiger (Marken Standiger) Standiger (Marken Standiger) Standiger (Marken Standiger) Standiger (Marken Standiger) Standiger (Marken Standiger)					
Sele	ct view as pr	oteins				
Sele	ct view as pr	oteins				
Sele	n Prote Steel Specie	oteins	040			

	 if the two codons differ at more than one position, π_i, for synonymous transversion,
	$q_{\mu} = \kappa \pi_{\mu}$, for synonymous transition,
	$\omega \pi_j$, for nonsynonymous transversion,
	$\Theta \kappa \pi_j$, for nonsynonymous transition,
The equilibrium also be calculate variable Codor ratio of nonsyn specifying mod-	in frequency of coden j (g_1^0) can be considered a free parameter, but can deform the nucleotide frequencies at the three coden positions (control $b^{TE} = 0$). Under this model, the relationship holds that $\sigma = \frac{1}{3}\omega/\frac{1}{\sigma_{c}}$, the supmost/spromymous substitution rates. This busic model is fitted by el = 0 (Sisting = 0, in the control file codemi.ed. It forms the basis for and model information for the control file.

You can determine om usually not all sites in a time.	ega for the whole dataset; however, a sequence are under selection all the
PAML (and other prog for each site over the w or determine omega fo <i>Site Models</i> .	grams) allow to either determine omeg whole tree, Branch Models , wr each branch for the whole sequence,
It would be great to do vacuolar ATPases was evolution of modern h provide much statistic) both, i.e., conclude codon 176 in the under positive selection during the umans – alas, a single site does not s

Sites model(s)

work great have been shown to work great in few instances. The most celebrated case is the influenza virus HA gene.

A talk by Walter Fitch (slides and sound) on the evolution of this molecule is <u>here</u>. This <u>article by Yang et al. 2000</u> gives more background on ml aproaches to measure omega. The dataset used by Yang et al is here: <u>flu data.paup</u>.

sites model in MrBayes The MrBayes block in a nexus file might look something like this: begin mrbayes; set autoclose=yes; lset nst=2 rates=gamma nucmodel=codon omegavar=Ny98; mcmep gamplefreq=500 printfreq=500; mcme ngen=500000; sump burnin=50; sumt burnin=50; end;

	F296	:00	(;	fx 1							
	A	8	C	D	E		G	н			K
1	ID: 61527975621		-	-	-		-				
2	Gen	Link	TL.	kappa	omoga(-)	omega(N)	omega(+)	pi(-)	p(N)	pi(+)	pi(AAA)
3	1	-12383.838	5.3	1	0.602974		1,193261	0.26419	0.59554	0.14027	0.01639
4		-7676.771	4,603	1,591525	0.536879		2,258048	0.923285	0.068083	0.006632	0.01639
5	200	-7015.661	4.307	8.875585	0.538627	1	1,486079	0.939391	0.03176	0.026849	0.01204
6	300	-6580.113	3.935	8.902571	0.519568	1	1.004112	0.962441	0.031962	0.005597	0.00895
7	400	-8013.857	3.519	9.614255	0.424431	1	1.004112	0.9998			0.00895
8	500	-5784.614		9.445543	0.428026	1	1.068171	0.9998	0.0001	0.0001	0.00895
9	600	-5588.657	2.928	9.159937	0.387237		1.208088	0.9998		0.0001	0.00895
277	27400	-3302.407	0.327	6.769701	0.393048	1	1.822481	0.966392	0.00155	0.032058	0.04141
278	27503	-3306 792	0.328	7.050469	0.462704	1	2 115394	0.973923	0.001631	0.024446	0.02394
279	27603	-3305.634	0.323	7.20776	0.587549	1	2.616971	0.973923	0.001631	0.024446	0.02394
280	27700	-3302 213	0.351	4.383428	0.388886	1	2 441354	0.968368	0.000992	0.03054	0.04141
281	27800	-3300.435	0.339	4.919751	0.386866	1	2,146471	0.968368	0.000992	0.03064	0.04141
282	27903	-3297 545	0.324	4.905811	0.399035	1	1.445199	0.968368	0.000992	0.03054	0.04141
283	28000	-3296.096	0.331	4.97571	0.399035	1	1,275853	0.968368	0.000992	0.03064	0.04141
284	28100	-3307.594	0.309	6.283069	0.514647	1	2.454874	0.96646	0.001277	0.032263	0.02394
285	28203	-3294.888	0.327	4.565878	0.410363	1	2.312443	0.966705	0.002322	0.030973	0.04141
286	28300	-3296.543	0.332	4,42914	0.372862	1	2.173136	0.966705	0.002322	0.030973	0.04141
287	28400	-3302.088	0.335	4.968075	0.330204	1	2.405412	0.966705	0.002322	0.030973	0.04141
288	28500	-3304.229	0.338	4,753609	0.327131	1	1,401676	0.974843	0.00097	0.024187	0.04141
289	28603	-3299.838	0.333	4.306981	0.356643	1	1.742403	0.974843	0.00097	0.024187	0.04141
005	28700	-3302.403	0.339	3.994957	0.375449	1	1.036664	0.974843	0.00097	0.024187	0.04141
291	28803	-3301.33	0.342	4.504589	0.344521	1	1.197116	0.974843	0.00097	0.024187	0.04141
292	28900	-3302.296	0.34	4.605726	0.302301	1	1,405759	0.974843	0.00097	0.024187	0.04141
293	29000	-3300.37	0.334	6.641289	0.318088	1	1.193431	0.974843	0.00097	0.024187	0.04141
294	29100	-3298,703	0.338	6.931822	0.334329	1	1,193431	0.974843	0.00097	0.024187	0.04141
295	29203	-3299.155	0.349	6.376905	0.334329	1	1.111764	0.974843	0.00097	0.024187	0.04141
296	29300	-3299.152	0.331	6.309084	0.29579	1	1.349596	0.974843	0.00097	0.024187	0.04141
297	29403	-3304.317	0.301	5.199088	0.391512	1	1.965175	0.97472	0.0001	0.02518	0.02394
298	29500	-3292.317	0.302	6.466744	0.412489	1	1.347872	0.974843	0.00097	0.024187	0.04141
299	29603	-3289.007	0.307	5.569029	0.365108	1	1.159759	0.974843	0.00097	0.024187	0.04141
300	29700	-3298.528	0.321	5.763751	0.402978	1	1,183786	0.976648	0.0001	0.023252	0.02394
301	29803	-3293.023	0.326	6.213111	0.365162	1	1.244253	0.974843	0.00097	0.024187	0.04141
302	29900	-3297.118	0.332	5.924342	0.355129	1	1.095181	0.974843	0.00097	0.024187	0.04141
303	30000	-3293.877	0.322	5.967275	0.342528	1	1.348997	0.974843	0.00097	0.024187	0.04141
304					0.388087						

BR	BS	BT	BU	BV	BW	BX	BY	BZ	
pi(TTG)	pi(TTT)	pr+(1,2,3)	pr+(4,5,6)	pr+(7,8,9)	pr+(10,11,12)	pr+(13,14,15)	pr+(16,17,18)	pr+(19,20,21)	pr
0.016393	0.016393	0	0	0	0	0	0	0	
0.016393	0.016393	0	0	0	0	0	0	0	
0.013724	0.009149	0	0	0	0	0	0	0	
0.024152	0.012044	0	0	0	0	0	0	0	
0.024152	0.012044	0			0	0	0	0	
0.024152	0.012044	0	0	0	0	0	0	0	
0.024152	0.012044		0	0	0		0	0	
0.025062	0.017589	0	0	0	0	0		0	
0.00469	0.019104	ó	ó	ő	0	Ó	ó	0	
0.00469	0.019104	0	0	Ó	0	0	0	0	
0.025062	0.017589	0	0	0	0	0	0	0	
0.025062	0.017589	ő	ő		0	0		0	
0.025062	0.017589	â	ő	i i	0	0	i i	0	
0.025082	0.017589	i i	ò	i i	0	i i		i iii	
0.00469	0.019104	ő	ő	i i	0	ŏ		ő	
0.025062	0.017589	ő	ő	, i	0	, in the second s		0	
0.025062	0.017589	- O			0	0	0	0	
0.025062	0.017580								
0.025082	0.017589	ŏ	ŏ	ŏ		ŏ	ň	ő	
0.025062	0.017589	ŏ	ő	i iii	0	ŏ		ő	
0.025062	0.017590								
0.025062	0.017589	ő	ő	ě			ő		
0.025062	0.017589	ő	ő	ŏ		ő	ő		
0.025062	0.017589	ŏ	ŏ	ŏ		ŏ	ň	ő	
0.025082	0.017589	ŏ	ŏ	ŏ	0	ŏ	ň	ő	
0.025062	0.017590		- i	- i					
0.025062	0.017599		ŏ	ě			ő		
0.00469	0.019104	ő	ő	ő			ő		
0.025062	0.017580								
0.020002	0.017580		, in the second s						
0.020002	0.010104								
0.00400	0.019104								
0.025062	0.017560				0	0		0	
0.025062	0.017589							0	
0.025062	0.017589	0	0	0	0	0	0	0	

Purify	ying selectio	on in <i>E.coli</i> (ORFans	
dN-dS < 0 for some ORF	Fan <i>E. coli</i> clus ge	ters seems to enes.	suggest they a	are functional
Gene groups	Number	dN-dS>0	dN-dS<0	dN-dS=0
E. coli ORFan clusters	3773	944 (25%)	1953 (52%)	876 (23%)
Clusters of E.coll sequences found in Salmonella sp., Citrobacter sp.	610	104 (17%)	423(69%)	83 (14%)
Clusters of E.coli sequences found in some Enterobacteriaceae only	373	8 (2%)	365 (98%)	0 (0%)
	Adapted	after Yu, G. and Stoltzfu	is, A. Genome Biol Evol	(2012) Vol. 4 1176-1187

Other ways to detect positive selection

Selective sweeps -> fewer alleles present in population (see contributions from archaic Humans for example) Repeated episodes of positive selection -> high dN

For more discussion on archaic and early humans see: http://en.wikipedia.org/wiki/Denisova_hominin

http://www.nytimes.com/2012/01/31/science/gains-in-dna-arespeeding-research-into-human-origins.html

http://www.sciencedirect.com/science/article/pii/ S0002929711003958 http://www.abc.net.au/science/articles/2012/08/31/3580500.htm

http://www.sciencemag.org/content/334/6052/94.full http://www.sciencemag.org/content/334/6052/94/ F2.expansion.html

http://haplogroup-a.com/Ancient-Root-AJHG2013.pdf